
APTS Statistical Computing Assessment 2023: Thin Plate Splines
The work provided here is intended to take up to half a week to complete. Students should talk to their

supervisors to find out whether or not their department requires this work as part of any formal accreditation
process. Departments decide on the appropriate level of assessment locally, and may choose to drop some (or
indeed all) of the parts, accordingly. In order to avoid undermining institutions’ local assessment procedures the
module lecturer will not respond to enquiries from students about this assignment.

Thin plate splines are a non-parametric way of estimating a function of several variables from data. The idea
is that you have a model:

yi = f(xi) + ϵi, i = 1, . . . , n

where xi and yi are observed, f is an unknown smooth function, and ϵi a zero mean error term with variance σ2.
f can be represented using a thin plate spline function. In principle we can do this for any dimension of xi, but for
now let’s stick to dimension 2, bivariate smoothing.

To keep computation efficient we start by choosing k points x∗
j spread ‘nicely’ throughout the the xi points (if

n is not too large we might just set k = n and set x∗
i = xi, otherwise we might randomly sample k of the xi points

to use as x∗
j points). Then define a function

η(r) =

{
r2 log(r) r > 0
0 otherwise

and define ηj(x) = η(∥x− x∗
j∥). We can represent f as

f(x) = α0 + α1x1 + α2x2 +

k∑
j=1

ηj(x)δj (1)

where δ and α are parameter vectors to be estimated. Typically we choose k to be fairly large, to avoid biasing
estimates by using an overly restrictive model, but this may in turn allow the model to overfit. To avoid this the
model is usually estimated by minimizing a weighted sum of lack of fit and wiggliness of f :

n∑
i=1

{yi − f(xi)}2 + λ

∫
∂2f

∂x2
1

2

+ 2
∂2f

∂x1∂x2

2

+
∂2f

∂x2
2

2

dx1dx2

λ controls the smoothness of the estimated f . The δ and α minimizing this turn out to be the minimizers of

∥y −Tα−Eδ∥2 + λδTE∗δ subject to T∗Tδ = 0,

where E∗
ij = ηj(x

∗
i), Eij = ηj(xi) and the norm is Euclidean. The ith row of n× 3 matrix T is (1,xi) and the ith

row of k × 3 matrix T∗ is (1,x∗
i). The constraint is inconvenient, but can be eliminated by re-parameterization.

Let

T∗ = Q

[
R
0

]
and let Z be the last k−3 columns of Q (something like Z <- qr.Q(qr(Ts),complete=TRUE)[,-(1:3)]
would find Z explicitly). Then δ = Zδz will always meet the constraint for any δz vector. Hence we can re-write
the objective to minimize as

∥y −Xβ∥2 + λβTSβ where X = [EZ,T], S =

[
ZTE∗Z 0

0 0

]
and β =

[
δz
α

]
Minimizing this w.r.t. β we get

β̂ = (XTX+ λS)−1XTy, µ̂ = Xβ̂ and EDF = trace{(XTX+ λS)−1XTX}

where µ̂ is the model prediction of E(y) and EDF is the effective degrees of freedom of the model, which is
between 3 and k, reflecting the fact that we have constrained the model fit by imposing the penalty during fitting.

A popular method for estimating λ is generalized cross validation, which chooses λ to minimize

V (λ) = ∥y − µ̂∥2/(n− EDF)2.

1

This gets rather expensive if we have to compute the EDF and µ̂ using the above formulae, but things can be made
much cheaper with some further transformations of the problem. First form a new QR decomposition X = QR
(here Q has the same dimension as X, see ?qr.Q to extract it from the result of qr(X)), and then the symmetric
eigen decomposition UΛUT = R−TSR−1. Then it easy to show that β̂ = R−1U(I + λΛ)−1UTQTy and
EDF = tr{(I+ λΛ)−1}. Now I+ λΛ is a diagonal matrix, so if a = (I+ λΛ)−1b then ai = bi/(1 + λΛii) - i.e.
there is no expensive matrix inversion to be done. The same goes for the EDF calculation. Hence the computation
of the GCV score is now very cheap for each trial λ value.

1. Show that the reparameterization δ = Zδz indeed results in δ always meeting the constraint.

2. Show that the efficient expressions to the EDF and β̂ are computing the same thing as the original (inefficient)
expressions.

3. Write a function, fitTPS for fitting thin plate splines to x, y data, choosing the smoothing parameter by
GCV. Give the list object returned by your function a class tps, and also write a plot.tps method
function for this class.

In detail:

• fitTPS(x,y,k=100,lsp=c(-5,5)) should be a function with arguments

x an n× 2 matrix of location values.

y the n vector of values to smooth.

k the number of basis functions to use.

lsp the log λ limits between which to search for the optimal smoothing parameter value.

To optimize the GCV score, simply evaluate it on a regular (log scale) grid of smoothing parameter
values between the log limits given, and pick the value giving the best result. The function should
return an object of class tps, which should be a list probably containing at least the following items:

beta the best fit β̂ at the optimal λ value.

mu the corresponding µ̂.

medf the effective degrees of freedom at the optimal λ value.

lambda the vector of 100 λ values searched over.

gcv the corresponding GCV score vector.

edf the corresponding vector of EDFs.

Other items will be needed to enable predictions from the model.

• plot.tps should have as its first argument an object of class tps as returned from fitTPS.
plot.tps should plot your fitted thin plate spline as a contour plot or a perspective plot. Note that to
predict from the fitted model you can transform from β̂ to α̂ and δ̂ and use (1). Alternatively produce
the equivalent of X for the new x values at which you want to predict, but using the Z computed for
fitting.

Here is some code to generate example test data and plot the true function (ff) underlying it.

ff <- function(x) exp(-(x[,1]-.3)ˆ2/.2ˆ2-(x[,2] - .3)ˆ2/.3ˆ2)*.5 +
exp(-(x[,1]-.7)ˆ2/.25ˆ2 - (x[,2] - .8)ˆ2/.3ˆ2)

n <- 500
x <- matrix(runif(n*2),n,2)
y <- ff(x) + rnorm(n)*.1 ## generate example data to fit
visualize test function ff...
m <- 50;x2 <- x1 <- seq(0,1,length=m)
xp <- cbind(rep(x1,m),rep(x2,each=m))
contour(x1,x2,matrix(ff(xp),m,m))
persp(x1,x2,matrix(ff(xp),m,m),theta=30,phi=30)

2

