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Introduction

In order to get the most out of the APTS module on Statistical Modelling, students should have, at the
start of the module, a sound knowledge of the principles of statistical inference and the theory of linear
and generalised linear models. Students should also have some experience of statistical modelling in R.

The following reading and activities are recommended to all students to (re)-familiarise themselves with
those topics.

Statistical inference: It is recommended that students (re)-read the notes of the APTS module on
Statistical Inference, available from the APTS website, and complete the assessment exercise (if they
have not already done so). No further material is provided here.

Linear and generalised linear models: A student who has covered Davison (2003, Chapter 8 and
10.1-10.4) will be more than adequately prepared for the APTS module. For students without access to
this book, the main theory is repeated in the Preliminary Material. The inference methodology described
there is largely based on classical statistical theory. Although prior experience of Bayesian statistical
modelling would be helpful, it will not be assumed.

Preliminary material exercises: Nine exercises are included in the Preliminary Material.

R practicals: Some practical exercises are also provided at the end of the preliminary material (see
here) to enable students to familiarise themselves with statistical modelling in R.

Typos and issues
You can report and suggest fixes to typos and issues by email to ioannis.kosmidis@warwick.ac.uk.

Acknowledgements
This set of notes is an edited and enriched version of original material developed by previous module
leaders of the APTS Statistical Modelling module. These are (in reverse chronological order)

Name Affiliation
Helen Ogden University of Southampton
Antony Overstall University of Southampton
Dave Woods University of Southampton
Jon Forster University of Warwick
Anthony Davison EPFL
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Chapter 1

Model selection

Remember that all models are wrong; the practical question is how wrong do they have to be
to not be useful.

— George Box (1919 – 2013)

in Box and Draper (1987). Empirical Model-Building and Response Surfaces, p. 74

1.1 Introduction
Statisticians construct models to simplify reality, to gain understanding, to compare scientific, economic,
or other theories, and to predict future events or data. We rarely believe in our models, but regard them
as temporary constructs, which should be subject to improvement. Often we have several models and
must decide which, if any, is preferable.

Principles for model selection include:

• Substantive knowledge, from previous studies, theoretical arguments, dimensional or other general
considerations.

• Robustness to departures from assumptions: we prefer models that provide valid inference even if
some of their assumptions are invalid.

• Quality of fit: we prefer models that perform well in terms of informal devices such as residuals
and graphical assessments, or more formal or goodness-of-fit tests.

• Parsimony: for reasons of economy we seek the simplest possible models that are adequate descrip-
tions of the data.

There may be a very large number of plausible models for us to compare. For instance, in a linear
regression with 𝑝 covariates, there are 2𝑝 possible combinations of covariates: for each covariate, we need
to decide whether or not to include that variable in the model. If 𝑝 = 20 we have over a million possible
models to consider, and the problem becomes even more complex if we allow for transformations and
interactions in the model.

To focus and simplify discussion we will consider model selection among parametric models, but the ideas
generalize to semi-parametric and non-parametric settings.

Example 1.1 (Nodal involvement data). A logistic regression model for binary responses assumes that
𝑌𝑖 ∣ 𝑥𝑖 ∼ Bernoulli(𝜇𝑖), with 𝜇𝑖 = 𝑃(𝑌𝑖 = 1 ∣ 𝑥𝑖), and a linear model for log odds

log( 𝜇𝑖
1 − 𝜇𝑖

) = 𝑥⊤
𝑖 𝛽 .
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Chapter 1. Model selection

The log-likelihood about 𝛽, assuming that 𝑌1, … , 𝑌𝑛 are independent conditionally on the covariate vectors
𝑥1, … , 𝑥𝑛, is

ℓ(𝛽) =
𝑛

∑
𝑖=1

𝑦𝑖𝑥⊤
𝑖 𝛽 −

𝑛
∑
𝑖=1

log {1 + exp(𝑥⊤
𝑖 𝛽)} .

A good fit gives large maximized log-likelihood ̂ℓ = ℓ( ̂𝛽) where ̂𝛽 is the maximum likelihood estimator.

The SMPracticals R package contains a dataset called nodal, which relates to the nodal involvement
(r) of 53 patients with prostate cancer, with five binary covariates aged, stage, grade, xray and acid.

Considering only the models without any interaction between the 5 binary covariates, results in 25 = 32
possible logistic regression models for this data. We can rank these models according to the value of
the maximized log-likelihood ̂ℓ. Figure 1.1 summarizes such a ranking through a plot of the maximized
log-likelihood of each of the 32 models under consideration against the number of unknown parameters
in each model.
library("SMPracticals")
library("MuMIn")
mod_full <- glm(r ~ aged + stage + grade + xray + acid,

data = nodal, family = "binomial", na.action = "na.fail")
mod_table <- dredge(mod_full, rank = logLik)
plot(logLik ~ df, data = mod_table,

xlab = "Number of parameters",
ylab = "Maximized log-likelihood",
bg = "#ff7518", pch = 21)
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Figure 1.1: Maximized log-likelihoods for 32 possible logistic regression models for the nodal data.

Adding terms always increases the maximized log-likelihood ̂ℓ. So, taking the model with highest ̂ℓ would
give the full model. We need to a different way to compare models, which should trade off quality of fit
(measured by ̂ℓ) and model complexity (number of parameters or, more generally, degrees of freedom).
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Chapter 1. Model selection

1.2 Criteria for model selection
1.2.1 Likelihood inference under the wrong model
Suppose the (unknown) true model has independent 𝑌1, … , 𝑌𝑛, where 𝑌𝑖 has a density or probability
mass function 𝑔(𝑦). Suppose we have a candidate model that assumes 𝑌1, … , 𝑌𝑛 are independent where
𝑌𝑖 has a density of probability mass function 𝑓(𝑦 ; 𝜃). We wish to compare the candidate model against
other candidate models. For each candidate model, we first find the maximum likelihood estimate ̂𝜃 of
the model parameters, and, then, use criteria based on the maximized log-likelihood ̂ℓ = ℓ( ̂𝜃) to compare
candidate models.

We do not assume that any of the candidate models are correct; there may be no value of 𝜃 such that
𝑓(⋅ ; 𝜃) = 𝑔(⋅). Before we can decide on an appropriate criterion for choosing between models, we first
need to understand the asymptotic behaviour of ̂𝜃 and ℓ( ̂𝜃) without the usual assumption that the model
is correctly specified.

The log-likelihood ℓ(𝜃) of the candidate model is maximized at ̂𝜃, and

̄ℓ( ̂𝜃) = 𝑛−1ℓ( ̂𝜃) → ∫ log 𝑓(𝑦 ; 𝜃𝑔)𝑔(𝑦) 𝑑𝑦, almost surely as 𝑛 → ∞ ,

where 𝜃𝑔 minimizes the Kullback-Leibler divergence

𝐾𝐿(𝑓𝜃, 𝑔) = ∫ log{ 𝑔(𝑦)
𝑓(𝑦 ; 𝜃)} 𝑔(𝑦) 𝑑𝑦 .

Theorem 1.1. Suppose the true model has 𝑌1, … , 𝑌𝑛 independent with 𝑌𝑖 having a density or probability
mass function 𝑔(𝑦), but, instead, we assume that 𝑌𝑖 has a density or probability mass function 𝑓(𝑦 ; 𝜃).
Then under mild regularity conditions, the maximum likelihood estimator ̂𝜃 satisfies

√𝑛( ̂𝜃 − 𝜃𝑔) 𝑑→ N (0, 𝑛𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)𝐼(𝜃𝑔)−1) , (1.1)

where
𝐾(𝜃) = 𝑛 ∫ 𝜕 log 𝑓(𝑦 ; 𝜃)

𝜕𝜃
𝜕 log 𝑓(𝑦 ; 𝜃)

𝜕𝜃⊤ 𝑔(𝑦) 𝑑𝑦,

𝐼(𝜃) = −𝑛 ∫ 𝜕2 log 𝑓(𝑦 ; 𝜃)
𝜕𝜃𝜕𝜃⊤ 𝑔(𝑦) 𝑑𝑦 .

The likelihood ratio statistic converges in distribution as

𝑊(𝜃𝑔) = 2 {ℓ( ̂𝜃) − ℓ(𝜃𝑔)} 𝑑→
𝑝

∑
𝑟=1

𝜆𝑟𝑉𝑟 ,

where 𝑉1, … , 𝑉𝑝 are independent with 𝑉𝑖 ∼ 𝜒2
1, and 𝜆𝑟 are eigenvalues of 𝐾(𝜃𝑔)1/2𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)1/2. Thus,

𝐸{𝑊(𝜃𝑔)} → tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)}.

Under the true model, 𝜃𝑔 is the ‘true’ value of 𝜃, 𝐾(𝜃) = 𝐼(𝜃), 𝜆1 = ⋯ = 𝜆𝑝 = 1, and we recover the
usual results.

In practice 𝑔(𝑦) is, of course, unknown, and then 𝐾(𝜃𝑔) and 𝐼(𝜃𝑔) may be estimated by

𝐾̂ =
𝑛

∑
𝑖=1

𝜕 log 𝑓(𝑦𝑖 ; ̂𝜃)
𝜕𝜃

𝜕 log 𝑓(𝑦𝑖 ; ̂𝜃)
𝜕𝜃⊤ , ̂𝐽 = −

𝑛
∑
𝑖=1

𝜕2 log 𝑓(𝑦𝑖 ; ̂𝜃)
𝜕𝜃𝜕𝜃⊤ .

The latter is just the observed information matrix. We can then construct confidence regions and
hypothesis tests about 𝜃𝑔, using the fact that, from (1.1), the approximate distribution of ̂𝜃 is
N (𝜃𝑔, 𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)𝐼(𝜃𝑔)−1) and replacing the variance covariance matrix with ̂𝐽−1𝐾̂ ̂𝐽−1.
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Chapter 1. Model selection

1.2.2 Information criteria
Using the average log-likelihood ̄ℓ( ̂𝜃) to choose between models leads to overfitting, because we use the
data twice: first to estimate 𝜃, then again to evaluate the model fit.

If we had another independent sample 𝑌 +
1 , … , 𝑌 +

𝑛 ∼ 𝑔 and computed

̄ℓ+( ̂𝜃) = 𝑛−1
𝑛

∑
𝑖=1

log 𝑓(𝑌 +
𝑖 ; ̂𝜃) ,

we would choose choose the candidate model that maximizes

Δ = E𝑔 [E+
𝑔 { ̄ℓ+( ̂𝜃)}] , (1.2)

where the inner expectation is over the distribution of 𝑌 +
𝑖 , and the outer expectation is over the distri-

bution of ̂𝜃.
Since 𝑔(.) is unknown, we cannot compute Δ directly. We will show that ̄ℓ( ̂𝜃) is a biased estimator of
Δ, but by adding an appropriate penalty term we can obtain an approximately unbiased estimator of Δ,
which we can use for model comparison.

We write
E𝑔{ ̄ℓ( ̂𝜃)} = E𝑔{ ̄ℓ( ̂𝜃) − ̄ℓ(𝜃𝑔)}⏟⏟⏟⏟⏟⏟⏟

𝑎

+E𝑔{ ̄ℓ(𝜃𝑔)} − Δ⏟⏟⏟⏟⏟⏟⏟
𝑏

+Δ .

Then, 𝑎 + 𝑏 is the bias in using ̄ℓ( ̂𝜃) to estimate Δ. Hence, finding expressions for 𝑎 and 𝑏 would allow us
to correct for that bias. We have

𝑎 = E𝑔{ ̄ℓ( ̂𝜃) − ̄ℓ(𝜃𝑔)} = 1
2𝑛𝐸𝑔{𝑊(𝜃𝑔)} ≈ 1

2𝑛 tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)} .

Results on inference under the wrong model (we will not prove this here) may be used to show that

𝑏 = E𝑔{ ̄ℓ(𝜃𝑔)} − Δ ≈ 1
2𝑛 tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)} .

Putting the latter two expressions together, we have

E𝑔{ ̄ℓ( ̂𝜃)} = Δ + 𝑎 + 𝑏 = Δ + 1
𝑛 tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)} .

So, in order to correct the bias in using ̄ℓ( ̂𝜃) to estimate Δ, we can aim to maximize

̄ℓ( ̂𝜃) − 1
𝑛 tr( ̂𝐽−1𝐾̂) ,

over the candidate models. Equivalently, we can maximize

̂ℓ − tr( ̂𝐽−1𝐾̂) ,

or, equivalently, minimize
2{tr( ̂𝐽−1𝐾̂) − ̂ℓ} ,

The latter expression is called the Takeuchi Information Criterion and has also been refereed to as the
Network Information Criterion.

Let 𝑝 = dim(𝜃) be the number of parameters in a candidate model, and ̂ℓ the corresponding maximized
log likelihood. There are many other information criteria with a variety of penalty terms:

Name Acronym Criterion

Akaike Information Criterion AIC 2(𝑝 − ̂ℓ)

7



Chapter 1. Model selection

Name Acronym Criterion

Corrected AIC AICc 2(𝑝 + (𝑝2 + 𝑝)/(𝑛 − 𝑝 − 1) − ̂ℓ)
Bayesian Information Criterion BIC 2(𝑝 log𝑛/2 − ̂ℓ)
Deviance Information Criterion DIC
Extended Information Criterion EIC
Generalized Information Criterion GIC

⋮

Another popular model selection criterion for regression problems is Mallows’ 𝐶𝑝 = RSS/𝑠2 + 2𝑝 − 𝑛,
where RSS is the residual sum of squares of the candidate model, and 𝑠2 is an estimate of the error
variance 𝜎2.

Example 1.2 (Nodal involvement data (revisited)). AIC and BIC can both be used to choose between
the 25 models that we fitted to the nodal involvement data in Example 1.1.

Both criteria prefer a model with four parameters, which includes three of the five covariates: acid,
stage and xray.
mods_AIC <- dredge(mod_full, rank = AIC)
head(mods_AIC)

Global model call: glm(formula = r ~ aged + stage + grade + xray + acid, family = "binomial",
data = nodal, na.action = "na.fail")

---
Model selection table

(Intrc) acid aged grade stage xray df logLik AIC delta weight
26 -3.052 + + + 4 -24.590 57.2 0.00 0.319
30 -3.262 + + + + 5 -23.880 57.8 0.58 0.239
28 -2.778 + + + + 5 -24.380 58.8 1.58 0.145
22 -2.734 + + + 4 -25.409 58.8 1.64 0.141
32 -3.079 + + + + + 6 -23.805 59.6 2.43 0.095
25 -2.082 + + 3 -27.231 60.5 3.28 0.062
Models ranked by AIC(x)
mods_BIC <- dredge(mod_full, rank = BIC)
head(mods_BIC)

Global model call: glm(formula = r ~ aged + stage + grade + xray + acid, family = "binomial",
data = nodal, na.action = "na.fail")

---
Model selection table

(Intrc) acid grade stage xray df logLik BIC delta weight
26 -3.052 + + + 4 -24.590 65.1 0.00 0.341
25 -2.082 + + 3 -27.231 66.4 1.31 0.177
22 -2.734 + + + 4 -25.409 66.7 1.64 0.150
18 -2.176 + + 3 -27.394 66.7 1.64 0.150
30 -3.262 + + + + 5 -23.880 67.6 2.55 0.095
10 -2.509 + + 3 -27.957 67.8 2.76 0.086
Models ranked by BIC(x)

Figure 1.2 shows the AIC and BIC for each of the 32 models, against the number of free parameters.
As is apparent, BIC increases more rapidly than AIC after the minimum, as it penalizes more strongly
against model complexity, as measured by the number of free parameters.
par(mfrow = c(1, 2))
plot(AIC ~ df, data = mods_AIC, xlab = "Number of parameters",

bg = "#ff7518", pch = 21)
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Chapter 1. Model selection

plot(BIC ~ df, data = mods_BIC, xlab = "Number of parameters",
bg = "#ff7518", pch = 21)
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Figure 1.2: AIC and BIC for 32 logistic regression models for the nodal data.

1.2.3 Theoretical properties of information criteria
We may assume that the true model is of infinite dimension, and that by choosing among our candidate
models we hope to get as close as possible to this ideal model, using the available data. We need some
measure of distance between a candidate and the true model, and we aim to minimize that distance. A
model selection procedure that selects the candidate closest to the truth for large 𝑛 is called asymptotically
efficient.

An alternative is to suppose that the true model is among the candidate models. If so, then a model
selection procedure that selects the true model with probability tending to one as 𝑛 → ∞ is called
consistent.

We seek to find the correct model by minimizing and information criterion IC = 𝑐(𝑛, 𝑝) − 2 ̂ℓ, where the
penalty 𝑐(𝑛, 𝑝) depends on sample size 𝑛 and the dimension 𝑝 of the parameter space.

A crucial aspect in the behaviour of model selection procedures is the differences in IC. Let IC be an
information criterion for the true model, and IC+ an information criterion for a model with one extra
parameter.

Then,
𝑃(IC+ < IC) = 𝑃 {𝑐(𝑛, 𝑝 + 1) − 2 ̂ℓ+ < 𝑐(𝑛, 𝑝) − 2 ̂ℓ}

= 𝑃 {2( ̂ℓ+ − ̂ℓ) > 𝑐(𝑛, 𝑝 + 1) − 𝑐(𝑛, 𝑝)} .

Table 1.2 lists the value of 𝑐(𝑛, 𝑝 + 1) − 𝑐(𝑛, 𝑝) for AIC, TIC, and BIC.
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Chapter 1. Model selection

Table 1.2: Difference in IC penalties

Criterion 𝑐(𝑛, 𝑝 + 1) − 𝑐(𝑛, 𝑝)
AIC = 2
TIC ≈ 2 for large 𝑛
BIC = log𝑛

Under regularity conditions about the model and as 𝑛 → ∞, 2( ̂ℓ+ − ̂ℓ) converges in distribution to a 𝜒2
1

random variable. So, as 𝑛 → ∞,

𝑃(IC+ < IC) → {0.157, if AIC or TIC is used
0, if BIC is used

.

Thus, in contrast to BIC, AIC and TIC have non-zero probability of selecting a model with an extra
parameter (over-fitting), even in very large samples.

1.3 Variable selection for linear models
Consider a linear regression model

𝑌 = 𝑋∗𝛽 + 𝜖 ,
with E(𝜖) = 0 and cov(𝜖) = 𝜎2𝐼𝑛, where 𝑋∗ is an 𝑛 × 𝑝∗ model matrix with columns 𝑣𝑗, for 𝑗 ∈ ℐ =
{1, … , 𝑝∗}, 𝑌 = (𝑌1, … , 𝑌𝑛)⊤, and 𝛽 = (𝛽1, … , 𝛽𝑝∗)⊤ is the vector of regression parameters.

Assume that the data generating process is a linear regression model of 𝑌 on a subset 𝒥 ⊆ ℐ of the
columns of 𝑋∗ with |𝒥| = 𝑝0 ≤ 𝑝∗, and the goal is to estimate 𝒥 based on data.

The parameters 𝛽 enter the model through a linear predictor. So, selecting columns of 𝑋∗ is formally
equivalent to estimating the sets

𝒥 = {𝑗 ∈ ℐ ∶ 𝛽𝑗 ≠ 0} and 𝒦 = {𝑗 ∈ ℐ ∶ 𝛽𝑗 = 0} ,

indicating which covariates should and should not be in the model, respectively.

A selected model can be either true, correct, or wrong. A true model has only those columns of $X^*
with indices in 𝒥. A correct model has the columns of $X^* with indices in 𝒮, where 𝒥 ⊆ 𝒮 ⊆ ℐ. A
wrong model has the columns of $X^* with indices 𝒮, where 𝒮 ⊄ 𝒥.

Suppose we fit a candidate model 𝑌 = 𝑋𝛽 + 𝜖, with 𝑋 having the columns of 𝑋∗ with indices in 𝒮 ⊆ ℐ
with |𝒮| = 𝑝 ≤ 𝑝∗. The fitted values are

𝑋 ̂𝛽 = 𝑋{(𝑋⊤𝑋)−1𝑋⊤𝑌 } = 𝐻𝑌 = 𝐻𝜇 + 𝐻𝜖 ,

where 𝜇 = 𝑋∗𝛽 is the expectation of 𝑌 , and 𝐻 = 𝑋(𝑋⊤𝑋)−1𝑋⊤ is the hat matrix. It is a simple exercise
to show that 𝐻𝜇 = 𝜇 if the model is correct.

As with AIC, suppose we have an independent set of responses 𝑌+ with 𝑌+ = 𝜇 + 𝜖+, where 𝜖+ and 𝜖
are independent, and E(𝜖+) = 0 and cov(𝜖+) = 𝜎2𝐼𝑛. A natural measure of prediction error in linear
regression is the mean squared error

Δ = 𝑛−1E [E+ {(𝑌+ − 𝑋 ̂𝛽)⊤(𝑌+ − 𝑋 ̂𝛽)}] ,

where expectations are taken over both 𝑌 and 𝑌+.

Theorem 1.2.

Δ =
⎧{
⎨{⎩

𝑛−1𝜇⊤(𝐼𝑛 − 𝐻)𝜇 + (1 + 𝑝/𝑛)𝜎2 , if the model is wrong
(1 + 𝑝/𝑛)𝜎2 , if the model is correct
(1 + 𝑝0/𝑛)𝜎2 , if the model is true

. (1.3)

10



Chapter 1. Model selection

Proof. We have

𝑌+ − 𝑋 ̂𝛽 = 𝑌+ − 𝐻𝑌 = 𝜇 + 𝜖+ − 𝐻𝜇 − 𝐻𝜖 = (𝐼𝑛 − 𝐻)𝜇 + (𝜖+ − 𝐻𝜖) .

Hence,
(𝑌+ − 𝑋 ̂𝛽)⊤(𝑌+ − 𝑋 ̂𝛽) = 𝜇(𝐼𝑛 − 𝐻)𝜇 + 𝜖⊤

+𝜖+ + 𝜖⊤𝐻𝜖 + 𝑍 ,
where 𝑍 collects all terms with E[E+(𝑍)] = 0. From the assumptions on the errors, we have E[E+(𝜖⊤

+𝜖+)] =
𝑛𝜎2, and E[E+(𝜖⊤𝐻𝜖)] = tr𝐻𝜎2 = 𝑝𝜎2. Collecting terms,

Δ = 𝜇(𝐼𝑛 − 𝐻)𝜇/𝑛⏟⏟⏟⏟⏟⏟⏟
Bias

+
Variance

⏞⏞⏞⏞⏞(1 + 𝑝/𝑛)𝜎2 .

If the model is correct then 𝐻𝜇 = 𝜇, and the bias term is zero. If the model is also true, then 𝑝 = 𝑝0.

The bias term 𝑛−1𝜇⊤(𝐼𝑛 − 𝐻)𝜇 = 𝑛−1‖𝜇 − 𝐻𝜇‖2
2 is positive, unless the model is correct, in which case

it is zero. Its size is reduced the closer 𝜇 is to the space spanned by the columns of 𝑋 (or, equivalently,
the closer 𝜇 is to its projected value 𝐻𝜇), and, hence we would expect a reduction in bias when useful
covariates are added to the model. The variance term (1 + 𝑝/𝑛)𝜎2 increases as 𝑝 increases, for example
whenever useless terms are included. Ideally, we would choose a model matrix 𝑋 to minimize Δ, but this
is impossible, because Δ depends on the unknowns 𝜇 and 𝜎. We will have to estimate Δ.

Example 1.3 (Polynomial regression). Consider the candidate models

𝑌𝑖 =
𝑝−1
∑
𝑗=0

𝛽𝑗𝑥𝑗
𝑖 + 𝜖𝑖 (𝑖 = 1, … , 𝑛) ,

where 𝑥1, … , 𝑥𝑛 have been generated from 𝑛 independent standard normal random variables. Assume
that the true model is 𝑌𝑖 = ∑5

𝑗=0 𝑥𝑗
𝑖 + 𝜖𝑖, hence 𝜇𝑖 = ∑5

𝑗=0 𝑥𝑗
𝑖 is a degree five polynomial, so 𝑝0 = 6.

Let 𝑛 = 20, and 𝜎2 = 1. Figure 1.3 shows
√

Δ for models of increasing polynomial degree, from the
intercept only model (𝑝 = 1), to a linear model (𝑝 = 2), to a quadratic model (𝑝 = 3), up to a degree 14
polynomial (𝑝 = 15). The minimum of Δ is achieved at 𝑝 = 𝑝0 = 6. There is a sharp decrease in bias as
useful covariates are added, and a slow increase with variance as the number of variables 𝑝 increases.
Delta <- function(p, p0, x, sigma2) {

cols <- 0:(p - 1)
cols0 <- 0:(p0 - 1)
n <- length(x)
X <- matrix(rep(x, p)^rep(cols, each = n), nrow = n)
X0 <- matrix(rep(x, p0)^rep(cols0, each = n), nrow = n)
mu <- rowSums(X0)
H <- tcrossprod(qr.Q(qr(X)))
bias <- sum(((diag(n) - H) %*% mu)^2) / n
variance <- sigma2 * (1 + p / n)
c(p = p, bias = bias, variance = variance)

}

n <- 20
sigma2 <- 1
p_max <- 15
set.seed(1)
x <- rnorm(n)
D <- data.frame(t(sapply(1:p_max, Delta, p0 = 6, x = x, sigma2 = 1)))

par(mfrow = c(2, 2))
plot(sqrt(bias) ~ p, data = D, subset = p > 2,

11



Chapter 1. Model selection

main = expression(sqrt("Bias")), ylab = "",
type = "b", bg = "#ff7518", pch = 21)

plot(sqrt(bias + variance) ~ p, data = D, subset = p > 2,
main = expression(sqrt(Delta)), ylab = "",
type = "b", bg = "#ff7518", pch = 21)

plot(sqrt(variance) ~ p, data = D, subset = p > 2,
main = expression(sqrt("Variance")), ylab = "",
type = "b", bg = "#ff7518", pch = 21)
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Figure 1.3: Δ for models with varying polynomial degree.

One approach to estimate Δ is to split the data into two parts, (𝑋, 𝑦) and (𝑋+, 𝑦+), where 𝑋+ is an
𝑛+ × 𝑝 matrix and 𝑦+ is the vector of the corresponding 𝑛+ response values. Then, we use the former
part to estimate the candidate models, and the latter part to compute the prediction error. We compute

Δ̂ = 1
𝑛+

(𝑦+ − 𝑋+ ̂𝛽)⊤(𝑦+ − 𝑋+ ̂𝛽) = 1
𝑛+

𝑛+

∑
𝑖=1

(𝑦+,𝑖 − 𝑥⊤
+,𝑖 ̂𝛽)2 ,

where ̂𝛽 is the least squares estimator of the candidate model.

The available data may be either small for splitting, and, more generally, data splitting is not the most

12
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efficient use of the available information. For this reason, we often use leave-one-out cross-validation to
estimate Δ as

Δ̂CV = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 ̂𝛽−𝑖)2 , (1.4)

where ̂𝛽−𝑗 is the estimate computed without the 𝑖th observation. At first glance, (1.4) seems to require
𝑛 fits of model. However, it can be shown that

Δ̂CV = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 ̂𝛽)2

(1 − ℎ𝑖𝑖)2 ,

where ℎ11, … , ℎ𝑛𝑛 are diagonal elements of 𝐻. So, (1.4) can be obtained from one fit.

A simpler, and often more stable, estimator than Δ̂CV uses generalized cross-validation and has the form

Δ̂GCV = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥⊤
𝑖 ̂𝛽)2

{1 − tr(𝐻)/𝑛}2 .

Theorem 1.3.
E(Δ̂GCV) = 1

𝑛(1 − 𝑝/𝑛)2 𝜇⊤(𝐼𝑛 − 𝐻)𝜇 + 1
1 − 𝑝/𝑛𝜎2 .

Furthermore, for large 𝑛, E(Δ̂GCV) ≈ Δ, with Δ as in (1.3).

Proof. It holds that 𝑌 − 𝑋 ̂𝛽 = (𝐼𝑛 − 𝐻)𝑌 = (𝐼𝑛 − 𝐻)𝜇 + (𝐼𝑛 − 𝐻)𝜖. So,

(𝑌 − 𝑋 ̂𝛽)⊤(𝑌 − 𝑋 ̂𝛽) = 𝜇⊤(𝐼𝑛 − 𝐻)𝜇 + 𝜖⊤(𝐼𝑛 − 𝐻)𝜖 + 𝑍 ,

where the terms collected in 𝑍 have expectation zero. Using the fact that tr𝐻 = 𝑝,

E(Δ̂GCV) = 1
𝑛(1 − 𝑝/𝑛)2 𝜇⊤(𝐼𝑛 − 𝐻)𝜇 + (𝑛 − 𝑝)

𝑛(1 − 𝑝/𝑛)2 𝜎2

= 1
𝑛(1 − 𝑝/𝑛)2 𝜇⊤(𝐼𝑛 − 𝐻)𝜇 + 1

1 − 𝑝/𝑛𝜎2 .
(1.5)

For large 𝑛 or small 𝑧 = 1/𝑛, a Taylor expansion of (1−𝑝𝑧)−1 about 𝑧 = 0 gives (1−𝑝𝑧)−1 = 1+𝑝𝑧+𝑂(𝑧2).
Also, 𝑧(1 − 𝑧𝑝)−2 = 𝑧 + 𝑂(𝑧2). Replacing (1 − 𝑝/𝑛)−1 and 𝑛−1(1 − 𝑝/𝑛)−2 in the last expression in (1.5)
with their first order approximations gives the right hand side of (1.3).

We can minimize either Δ̂CV or Δ̂GCV. Model selection based on leave-one-out cross validation has been
found to be less stable than generalized cross-validation. Another estimator of Δ is obtained using 𝑘-fold
cross-validation. 𝑘-fold cross-validation operates by splitting the data into 𝑘 roughly equal parts (say
𝑘 = 10), predicting the response for each part based on the model fit from the other 𝑘 − 1 parts, and,
then, selecting the model that minimizes an aggregate estimate of prediction error.

1.4 A Bayesian perspective on model selection
In a parametric model, the data 𝑦 is assumed to be a realization of 𝑌 with density or probability mass
function 𝑓(𝑦 ∣ 𝜃), where 𝜃 ∈ Ω𝜃.

Separate from data, the prior information about the parameter 𝜃 is summarized in a prior density or
probability mass function 𝜋(𝜃). The posterior density for 𝜃 is given by Bayes’ theorem as

𝜋(𝜃 ∣ 𝑦) = 𝜋(𝜃)𝑓(𝑦 ∣ 𝜃)
∫ 𝜋(𝜃)𝑓(𝑦 ∣ 𝜃) 𝑑𝜃 .

13



Chapter 1. Model selection

Here 𝜋(𝜃 ∣ 𝑦) contains all information about 𝜃, conditional on the observed data 𝑦. If 𝜃 = (𝜓⊤, 𝜆⊤)⊤, then
inference for 𝜓 is based on the marginal posterior density or probability mass function

𝜋(𝜓 ∣ 𝑦) = ∫ 𝜋(𝜃 ∣ 𝑦) 𝑑𝜆 .

Now, suppose we have 𝑀 alternative models for the data, with respective parameters 𝜃1 ∈ Ω𝜃1
, … , 𝜃𝑀 ∈

Ω𝜃𝑀
. The spaces Ω𝜃𝑚

may have different dimensions.

We enlarge the parameter space to define an encompassing model with parameter

𝜃 ∈ Ω =
𝑀
⋃

𝑚=1
{𝑚} × Ω𝜃𝑚

.

We need priors 𝜋𝑚(𝜃𝑚 ∣ 𝑚) for the parameters of each model, plus a prior 𝜋(𝑚) giving pre-data proba-
bilities for each of the models. Then, for each model we have

𝜋(𝑚, 𝜃𝑚) = 𝜋(𝜃𝑚 ∣ 𝑚)𝜋(𝑚) .

Inference about model choice is based on the marginal posterior

𝜋(𝑚 ∣ 𝑦) = ∫ 𝑓(𝑦 ∣ 𝜃𝑚)𝜋𝑚(𝜃𝑚)𝜋(𝑚) 𝑑𝜃𝑚
∑𝑀

𝑚′=1 ∫ 𝑓(𝑦 ∣ 𝜃𝑚′)𝜋𝑚′(𝜃𝑚′)𝜋(𝑚′) 𝑑𝜃𝑚′

= 𝜋(𝑚)𝑓(𝑦 ∣ 𝑚)
∑𝑀

𝑚′=1 𝜋(𝑚′)𝑓(𝑦 ∣ 𝑚′)
.

(1.6)

For each model, we can write the joint posterior of model and parameters as

𝜋(𝑚, 𝜃𝑚 ∣ 𝑦) = 𝜋(𝜃𝑚 ∣ 𝑚, 𝑦)𝜋(𝑚 ∣ 𝑦) ,

so Bayesian updating corresponds to the map

𝜋(𝜃𝑚 ∣ 𝑚)𝜋(𝑚) ↦ 𝜋(𝜃𝑚 ∣ 𝑚, 𝑦)𝜋(𝑚 ∣ 𝑦) .

So, for each model 𝑚 ∈ {1, … , 𝑀}, it is necessary to compute

• the posterior probability 𝜋(𝑚 ∣ 𝑦), which involves the marginal likelihood 𝑓(𝑦 ∣ 𝑚) = ∫ 𝑓(𝑦 ∣
𝜃𝑚, 𝑚)𝜋(𝜃𝑚 ∣ 𝑚) 𝑑𝜃𝑚; and

• the posterior density 𝜋(𝜃𝑚 ∣ 𝑦, 𝑚).
If there are just two models, we can write

𝜋(1 ∣ 𝑦)
𝜋(2 ∣ 𝑦) = 𝜋(1)

𝜋(2)
𝑓(𝑦 ∣ 1)
𝑓(𝑦 ∣ 2) ,

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by the Bayes factor 𝐵12 =
𝑓(𝑦 ∣ 1)/𝑓(𝑦 ∣ 2).
Example 1.4 (Lindley’s paradox). Suppose the prior for each 𝜃𝑚 is 𝑁(0, 𝜎2𝐼𝑝𝑚

), where 𝑝𝑚 = dim(𝜃𝑚).
Then,

𝑓(𝑦 ∣ 𝑚) = 𝜎−𝑝𝑚(2𝜋)−𝑝𝑚/2 ∫ 𝑓(𝑦 ∣ 𝑚, 𝜃𝑚)
𝑝𝑚

∏
𝑟=1

exp{−𝜃2
𝑚,𝑟/(2𝜎2)} 𝑑𝜃𝑚,𝑟

≈ 𝜎−𝑝𝑚(2𝜋)−𝑝𝑚/2 ∫ 𝑓(𝑦 ∣ 𝑚, 𝜃𝑚)
𝑝𝑚

∏
𝑟=1

𝑑𝜃𝑚,𝑟,

for a highly diffuse prior distribution (large 𝜎2). The Bayes factor for comparing the models is then
approximately

𝑓(𝑦 ∣ 1)
𝑓(𝑦 ∣ 2) ≈ 𝜎𝑝2−𝑝1𝑔(𝑦),
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where 𝑔(𝑦) depends on the two likelihoods but is independent of 𝜎2. Hence, whatever the data tell us
about the relative merits of the two models, the Bayes factor in favour of the simpler model can be made
arbitrarily large by increasing 𝜎. This illustrates Lindley’s paradox, and highlights that we must be
careful when specifying prior dispersion parameters when comparing models.

If a quantity 𝑍 has the same interpretation for all models, it is desirable to allow for model uncertainty
when constructing inferences or making predictions about it.

If prediction is the aim, the each model may be just a vehicle that provides a future value, and not of
interest on its own.

If 𝑍 corresponds to physical parameters (e.g. means, variances, etc.) that have the same interpretation
across models, then inferences can be constructed accounting for model uncertainty, but care is needed
with prior choice.

The predictive distribution for 𝑍 may be written

𝑓(𝑧 ∣ 𝑦) =
𝑀

∑
𝑚=1

𝑓(𝑧 ∣ 𝑚, 𝑦)𝜋(𝑚 ∣ 𝑦) ,

where 𝜋(𝑚 ∣ 𝑦) is as in (1.6).
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Chapter 2

Beyond generalized linear models

We must be careful not to confuse data with the abstractions we use to analyse them.

— William James (1842 – 1910)

2.1 Generalized linear models
Suppose that 𝑦1, … , 𝑦𝑛 are observations of response variables 𝑌1, … , 𝑌𝑛, which are assumed to be inde-
pendent conditionally on covariates 𝑥1, … , 𝑥𝑛. Furthermore, assume that 𝑌𝑖 has an exponential family
distribution. A generalized linear models links the mean 𝜇𝑖 = E(𝑌𝑖 ∣ 𝑥𝑖) to a linear combination of
covariates and regression parameters through a link function 𝑔(⋅) as

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑥⊤
𝑖 𝛽 .

Generalized linear models (GLMs) have proved effective at modelling real-world variation in a wide
range of application areas. However, situations frequently arise where GLMs do not adequately describe
observed data. This can be due to a number of reasons including:

• The mean model cannot be appropriately specified due to dependence on an unobserved or unob-
servable covariate.

• There is excess variability between experimental units beyond what is implied by the mean/variance
relationship of the chosen response distribution.

• The assumption of independence is not appropriate.

• Complex multivariate structures in the data require a more flexible model.

2.2 Overdispersion
2.2.1 An example
Example 2.1 (Toxoplasmosis data). The toxo dataset in the SMPracticals R package provides data
on the number of people testing positive for toxoplasmosis (r) out of the number of people tested (m) in
34 cities in El Salvador, along with the annual rainfall in mm (rain) in those cities.

We consider logistic regression models that assume that the numbers 𝑟1, … , 𝑟𝑛 of people testing posi-
tive for toxoplasmosis in the 𝑛 = 34 cities are realizations of independent random variables 𝑅1, … , 𝑅𝑛,
conditionally on a function of the annual rainfall 𝑥𝑖, and that 𝑅𝑖 ∣ 𝑥𝑖 ∼ Binomial(𝑚𝑖, 𝜇𝑖), where

log 𝜇𝑖
1 − 𝜇𝑖

= 𝜂𝑖 = 𝛽1 + 𝑓(𝑥𝑖) .
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Let 𝑌𝑖 = 𝑅𝑖/𝑚𝑖 be the proportion of people testing positive in the 𝑖th city. Because of the assumption of
a binomial response distribution, a logistic regression model sets the response variance to var(𝑌𝑖 ∣ 𝑥𝑖) =
𝜇𝑖(1 − 𝜇𝑖)/𝑚𝑖.

If we consider logistic models with a linear predictor that implies a polynomial dependence on rainfall,
AIC and stepwise selection methods both prefer a cubic model. For simplicity here, we compare a cubic
model and an intercept-only model, in which there is no dependence on rainfall. Figure 2.1 shows the
fitted proportions testing positive under the two models.
data("toxo", package = "SMPracticals")
mod_const <- glm(r/m ~ 1, data = toxo, weights = m,

family = "binomial")
mod_cubic <- glm(r/m ~ poly(rain, 3), data = toxo, weights = m,

family = "binomial")
plot(r/m ~ rain, data = toxo, xlab = "Annual rainfall (mm)",

ylab = "Proportion testing positive for toxoplasmosis",
bg = "#ff7518", pch = 21)

pred_cubic <- function(x)
predict(mod_cubic, newdata = list(rain = x), type = "response")

abline(h = plogis(coef(mod_const)), lty = 2)
curve(pred_cubic, add = TRUE, lty = 3)
legend("topleft", legend = c("intercept only", "cubic"), lty = c(2, 3))
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Figure 2.1: Proportion of people testing positive for toxoplasmosis against rainfall, with fitted proportions
under an intercept-only (dashed line) and a cubic (dotted line) logistic regression model.

We can also compare the models using a hypothesis test:
anova(mod_const, mod_cubic, test = "Chisq")

Analysis of Deviance Table

Model 1: r/m ~ 1

17



Chapter 2. Beyond generalized linear models

Model 2: r/m ~ poly(rain, 3)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 33 74.212
2 30 62.635 3 11.577 0.008981 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is evidence against the intercept-only model, which implies no effect of rain on the probability of
testing positive for toxoplasmosis, in favour of the cubic model.

However, we find that the residual deviance for the cubic model is 62.63, which is much larger than the
residual degrees of freedom (30). That is evidence of a poor fit, and may be due to overdispersion of the
responses. Overdispersion results in the residual variability being greater than what is prescribed by the
mean / variance relationship of logistic regression.

2.2.2 Quasi-likelihood
A quasi-likelihood approach to accounting for overdispersion models the mean and variance, but stops
short of a full probability model for the responses.

For a model specified by the mean relationship 𝑔(𝜇𝑖) = 𝜂𝑖, and variance var(𝑌𝑖 ∣ 𝑥𝑖) = 𝜎2𝑉 (𝜇𝑖)/𝑚𝑖, the
quasi-likelihood equations are

𝑛
∑
𝑖=1

𝑥𝑖
𝑦𝑖 − 𝜇𝑖

𝜎2𝑉 (𝜇𝑖)𝑔′(𝜇𝑖)/𝑚𝑖
= 0 , (2.1)

which can be solved with respect to 𝛽 without knowledge of 𝜎2.

If 𝑉 (𝜇𝑖) is the same function as in the definition of var(𝑌𝑖 ∣ 𝑥𝑖) for an exponential family distribution,
then it may be possible to solve (2.1) using standard GLM routines.

It can be shown that provided the mean and variance functions are correctly specified, asymptotic nor-
mality for ̂𝛽 still holds.

The dispersion parameter 𝜎2 can be estimated after estimating 𝛽, as

𝜎̂2 ≡ 1
𝑛 − 𝑝

𝑛
∑
𝑖=1

𝑚𝑖(𝑦𝑖 − ̂𝜇𝑖)2

𝑉 ( ̂𝜇𝑖)
.

Example 2.2 (Quasi-likelihood for the toxoplasmosis data). In order to fit the same models as before,
but with var(𝑌𝑖 ∣ 𝑥𝑖) = 𝜎2𝜇𝑖(1 − 𝜇𝑖)/𝑚𝑖, we do
mod_const_quasi <- glm(r/m ~ 1, data = toxo, weights = m,

family = "quasibinomial")
mod_cubic_quasi <- glm(r/m ~ poly(rain, 3), data = toxo, weights = m,

family = "quasibinomial")

Comparing the output from fitting the logistic regression with a cubic relationship to rainfall
summary(mod_cubic)

Call:
glm(formula = r/m ~ poly(rain, 3), family = "binomial", data = toxo,

weights = m)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.02427 0.07693 0.315 0.752401
poly(rain, 3)1 -0.08606 0.45870 -0.188 0.851172
poly(rain, 3)2 -0.19269 0.46739 -0.412 0.680141
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poly(rain, 3)3 1.37875 0.41150 3.351 0.000806 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 74.212 on 33 degrees of freedom
Residual deviance: 62.635 on 30 degrees of freedom
AIC: 161.33

Number of Fisher Scoring iterations: 3

to the corresponding output from solving the quasi-likelihood equations
summary(mod_cubic_quasi)

Call:
glm(formula = r/m ~ poly(rain, 3), family = "quasibinomial",

data = toxo, weights = m)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.02427 0.10716 0.226 0.8224
poly(rain, 3)1 -0.08606 0.63897 -0.135 0.8938
poly(rain, 3)2 -0.19269 0.65108 -0.296 0.7693
poly(rain, 3)3 1.37875 0.57321 2.405 0.0225 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 1.940446)

Null deviance: 74.212 on 33 degrees of freedom
Residual deviance: 62.635 on 30 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 3

we observe that the estimates of the 𝛽 coefficients are the same, but the estimated standard errors from
quasi-likelihood are inflated by a factor of 1.39, which is equal to the square root of the estimate 𝜎̂2 = 1.94
of 𝜎2. Note that the value of 𝜎̂2 is about double than 𝜎2 = 1, implied by logistic regression.

A comparison of two quasi-likelihood fits is usually performed by mimicking the 𝐹 test for nested linear
regression models, using residual deviances in place of residual sums of squares. The resulting 𝐹 statistic
is asymptotically valid. To illustrate, we compare the value of 𝐹 statistic

𝐹 = (74.21 − 62.63)/(33 − 30)
1.94 ,

to quantiles of its asymptotic 𝐹 distribution with 33 - 30 and 30 degrees of freedom. In R, we get
anova(mod_const_quasi, mod_cubic_quasi, test = "F")

Analysis of Deviance Table

Model 1: r/m ~ 1
Model 2: r/m ~ poly(rain, 3)

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 33 74.212
2 30 62.635 3 11.577 1.9888 0.1369
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After accounting for overdispersion, the evidence in favour of an effect of rainfall on toxoplasmosis inci-
dence is less compelling.

2.2.3 Parametric models for overdispersion
To construct a full probability model in the presence of overdispersion, it is necessary to consider the
reasons for the presence of overdispersion. Possible reasons include:

• There may be important covariates, other than rainfall, which are not observed.

• There may be many other features of the cities, possibly unobservable, all having a small individual
effect on incidence, but a larger effect in combination. Such effects may be individually undetectable,
a phenomenon sometimes described as natural excess variability between units.

Suppose that part of the linear predictor is missing from the model, that is the actual predictor is

𝜂∗
𝑖 = 𝜂𝑖 + 𝜁𝑖 ,

instead of just 𝜂𝑖, where 𝜁𝑖 may involve covariates 𝑧𝑖 that are different than those in 𝑥𝑖. We can compensate
for the missing term 𝜁𝑖 by assuming that it has a distribution 𝐹 in the population. Hence,

𝜇𝑖 = E(𝑌𝑖 ∣ 𝑥𝑖, 𝜁𝑖) = 𝑔−1(𝜂𝑖 + 𝜁𝑖) ∼ 𝐺 ,

where 𝐺 is the distribution induced by 𝐹 . Then,

E(𝑌𝑖 ∣ 𝑥𝑖) = E𝐺(𝜇𝑖) ,
var(𝑌𝑖 ∣ 𝑥𝑖) = E𝐺(var(𝑌𝑖 ∣ 𝑥𝑖, 𝜁𝑖)) + var𝐺(𝜇𝑖) .

For exponential family models, we get var(𝑌𝑖 ∣ 𝑥𝑖) = 𝜎2E𝐺(𝑉 (𝜇𝑖))/𝑚𝑖 + var𝐺(𝜇𝑖).
One approach is to model the 𝑌𝑖 directly, by specifying an appropriate form for 𝐺. For example, for the
toxoplasmosis data, instead of a quasi-likelihood approach, we can use a beta-binomial model, where

𝑌𝑖 = 𝑅𝑖/𝑚𝑖 ,
𝑅𝑖 ∣ 𝜇𝑖

ind∼ Binomial(𝑚𝑖, 𝜇𝑖) ,
𝜇𝑖 ∣ 𝑥𝑖

ind∼ Beta(𝑘𝜇∗
𝑖 , 𝑘(1 − 𝜇∗

𝑖 )) ,
log{𝜇∗

𝑖/(1 − 𝜇∗
𝑖 )} = 𝜂𝑖 ,

leading to

E(𝑌𝑖 ∣ 𝑥𝑖) = 𝜇∗
𝑖 and var(𝑌𝑖 ∣ 𝑥𝑖) = 𝜇∗

𝑖 (1 − 𝜇∗
𝑖 )

𝑚𝑖
(1 + 𝑚𝑖 − 1

𝑘 + 1 ) ,

with (𝑚𝑖 − 1)/(𝑘 + 1) representing the overdispersion factor.

Another, popular in practice, model that accounts for overdispersion in count responses assumes a Poisson
distribution for the responses and that the Poisson mean has a gamma distribution. This leads to a
negative binomial marginal distribution for the responses.

Models that explicitly account for overdispersion can, in principle, be fitted with popular estimation
methods, such as maximum likelihood. For example, the beta-binomial model has likelihood proportional
to 𝑛

∏
𝑖=1

Γ(𝑘𝜇∗
𝑖 + 𝑚𝑖𝑦𝑖)Γ(𝑘(1 − 𝜇∗

𝑖 ) + 𝑚𝑖(1 − 𝑦𝑖))Γ(𝑘)
Γ(𝑘𝜇∗

𝑖 )Γ(𝑘(1 − 𝑎𝜇∗
𝑖 ))Γ(𝑘 + 𝑚𝑖)

.

However, these models tend to have limited flexibility, and maximization of the likelihood can be difficult.
For those reasons, practitioners typically resort to alternative approaches.

A more flexible, and extensible approach models the excess variability by including an extra term in the
linear predictor

𝜂𝑖 = 𝑥⊤
𝑖 𝛽 + 𝑏𝑖 (2.2)
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where 𝑏1, … , 𝑏𝑛 can be thought of as representing the extra, unexplained by the covariates, variability
between units, and are called random effects. The model is completed by specifying a distribution 𝐹
for the random effects in the population. A typical assumption is that 𝑏1, … , 𝑏𝑛 are independent with
𝑏𝑖 ∼ N(0, 𝜎2

𝑏 ), for some unknown 𝜎2
𝑏 . We set E(𝑏𝑖) = 0, as an unknown mean for 𝑏𝑖 would be unidentifiable

in the presence of the intercept parameter in 𝜂𝑖.

Let 𝑓(𝑦𝑖 ∣ 𝑥𝑖, 𝑏𝑖 ; 𝜃) be the density or probability mass function of the chosen exponential family distribu-
tion, with linear predictor (2.2), and 𝑓(𝑏𝑖 ∣ 𝜎2

𝑏 ) the density function of a univariate normal distribution
with mean 0 and variance 𝜎2

𝑏 . The likelihood about the parameters (𝜃⊤, 𝜎2
𝑏 )⊤ of the random effects model

is
𝑓(𝑦 ∣ 𝑋 ; 𝜃, 𝜎2

𝑏 ) = ∫ 𝑓(𝑦 ∣ 𝑋, 𝑏 ; 𝜃, 𝜎2
𝑏 )𝑓(𝑏 ∣ 𝑋 ; 𝜃, 𝜎2

𝑏 )𝑑𝑏

= ∫ 𝑓(𝑦 ∣ 𝑋, 𝑏 ; 𝜃)𝑓(𝑏 ; 𝜎2
𝑏 )𝑑𝑏

= ∫
𝑛

∏
𝑖=1

𝑓(𝑦𝑖 ∣ 𝑥𝑖, 𝑏𝑖 ; 𝜃)𝑓(𝑢𝑖 ; 𝜎2
𝑏 )𝑑𝑏𝑖 .

(2.3)

Depending on what 𝑓(𝑦𝑖 ∣ 𝑥𝑖, 𝑏𝑖 ; 𝜃) is, no further simplification of (2.3) may be possible, and computation
needs careful consideration. We will briefly discuss such points later.

2.3 Dependence
2.3.1 An example
Example 2.3 (Toxoplasmosis data (revisited)). We can think of the toxoplasmosis cases in the 𝑖th city
arising as 𝑅𝑖 = ∑𝑚𝑖

𝑗=1 𝑌𝑖𝑗, where 𝑌𝑖𝑗 is a Bernoulli random variable, representing the toxoplasmosis status
of individual 𝑗, with probability

log
𝜇𝑖𝑗

1 − 𝜇𝑖𝑗
= 𝜂𝑖 = 𝛽1 + 𝑓(𝑥𝑖) . (2.4)

From the properties of the binomial distirbution, if {𝑌𝑖𝑗} are independent, then the logistic regresion
model on {𝑅𝑖} in Example 2.1 is the same to the Bernoulli model on {𝑌𝑖𝑗}. However, suppose that the
only assumptions we can confidently make is that {𝑅𝑖} are conditionally independent given the covariates
and that cov(𝑌𝑖𝑗, 𝑌𝑖𝑘 ∣ 𝑥𝑖) ≠ 0. Then,

var(𝑌𝑖 ∣ 𝑥𝑖) = 1
𝑚2

𝑖
{

𝑚𝑖

∑
𝑗=1

var(𝑌𝑖𝑗 ∣ 𝑥𝑖) + ∑
𝑗≠𝑘

cov(𝑌𝑖𝑗, 𝑌𝑖𝑘 ∣ 𝑥𝑖)}

= 𝜇𝑖(1 − 𝜇𝑖)
𝑚𝑖

+ 1
𝑚2

𝑖
∑
𝑗≠𝑘

cov(𝑌𝑖𝑗, 𝑌𝑖𝑘 ∣ 𝑥𝑖) .

As a result, positive correlation between individuals in the same city induces overdispersion in the number
of positive cases.

There may be a number of plausible reasons why there is dependence between responses corresponding
to units within a given cluster (in the toxoplasmosis example, clusters are cities). One compelling reason,
that we discussed already, is unobserved heterogeneity.

In the correct model (corresponding to 𝜂∗
𝑖 ), the toxoplasmosis status of individuals, 𝑌𝑖𝑗, may be indepen-

dent, so
𝑌𝑖𝑗 ⟂⟂ 𝑌𝑖𝑘 ∣ 𝑥𝑖, 𝜁𝑖 (𝑗 ≠ 𝑘) .

However, in the absence of knowledge of 𝜁𝑖, it may be the case that

𝑌𝑖𝑗 ⟂⟂/ 𝑌𝑖𝑘 ∣ 𝑥𝑖 (𝑗 ≠ 𝑘) .

Hence conditional (given 𝜁𝑖) independence between units in a common cluster 𝑖 becomes marginal depen-
dence, when marginalised over the population distribution 𝐹 of unobserved 𝜁𝑖.
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The correspondence between positive intra-cluster correlation and unobserved heterogeneity suggests
that intra-cluster dependence might be effectively modelled using random effects. For example, for the
individual-level toxoplasmosis data

𝑌𝑖𝑗 ∣ 𝑥𝑖, 𝑏𝑖
ind∼ Bernoulli(𝜇𝑖𝑗) ,

log
𝜇𝑖𝑗

1 − 𝜇𝑖𝑗
= 𝛽1 + 𝑓(𝑥𝑖) + 𝑏𝑖 ,

𝑏𝑖
ind∼ N(0, 𝜎2

𝑏 ) ,

which, for 𝜎2 > 0, implies
𝑌𝑖𝑗 ⟂⟂/ 𝑌𝑖𝑘 ∣ 𝑥𝑖 .

Intra-cluster dependence arises in many applications, and random effects provide an effective way of
modelling it.

2.3.2 Marginal models
Another way to account for intra-cluster dependence are marginal models. A marginal model expresses
𝜇𝑖𝑗 = E(𝑌𝑖𝑗 ∣ 𝜂𝑖𝑗) as a function of explanatory variables, through 𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗 = 𝑥⊤

𝑖𝑗𝛽, specifies a variance
relationship var(𝑌𝑖𝑗 ∣ 𝑥𝑖𝑗) = 𝜎2𝑉 (𝜇𝑖𝑗)/𝑚𝑖𝑗, and models corr(𝑌𝑖𝑗, 𝑌𝑖𝑘 ∣ 𝑥𝑖𝑗, 𝑥𝑖𝑘), as a function of 𝜇 and
possibly additional parameters.

It is important to note that the parameters 𝛽 in a marginal model have a different interpretation from
those in a random effects model, because for the latter

E(𝑌𝑖𝑗 ∣ 𝑥𝑖𝑗) = E(𝑔−1[𝑥⊤
𝑖𝑗𝛽 + 𝑏𝑖]) ≠ 𝑔−1(𝑥⊤

𝑖𝑗𝛽) if 𝑔 is not linear .

A random effects model describes the mean response at the subject level (subject specific), while a marginal
model describes the mean response across the population (population averaged).

As with the quasi-likelihood approach above, marginal models do not generally provide a full probability
model for the responses. Nevertheless, 𝛽 can be estimated using generalized estimating equations (GEEs).

The GEE estimator of �$ in a marginal model is the solution of of the form

∑
𝑖

(𝜕𝜇𝑖
𝜕𝛽 )

⊤
var(𝑌𝑖)−1(𝑌𝑖 − 𝜇𝑖) = 0 ,

where 𝑌𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)⊤ and 𝜇𝑖 = (𝜇𝑖1, … , 𝜇𝑖𝑛𝑖

)⊤, with 𝑛𝑖 indicating the number of observations in the
𝑖th response vector.

There are several consistent estimators for the covariance of GEE estimators. Furthermore, the GEE
approach is generally robust to misspecification of the correlation structure.

2.3.3 Clustered data
Examples where data are collected in clusters include:

• Studies in biometry where repeated measurements are made on experimental units. Such studies
can effectively mitigate the effect of between-unit variability on important inferences.

• Agricultural field trials, or similar studies, for example in engineering, where experimental units are
arranged within blocks.

• Sample surveys where collecting data within clusters or small areas can save costs.

Of course, other forms of dependence exist, for example spatial or serial dependence induced by the
arrangement of units of observation in space or time.
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Example 2.4. The rat.growth data in the SMPracticals R package gives the weekly weights (y) of 30
young rats. Figure 2.2 shows the weight evolution for each rat. While the weights of each rat appears to
grow roughly linearly with time, the intercept and slope of that weight evolution seem to vary between
rats.
data("rat.growth", package = "SMPracticals")
plot(y ~ week, data = rat.growth, type = "n", xlab = "Week", ylab = "Weight")
for (i in 1:30) {

dat_i <- subset(rat.growth, rat == i)
lines(y ~ week, data = dat_i, col = "grey")

}
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Figure 2.2: Individual rat weight by week, for the rat growth data.

Writing 𝑦𝑖𝑗 for the weight of rat 𝑖 at week 𝑥𝑖𝑗, we consider the simple linear regression

𝑌𝑖𝑗 = 𝛽1 + 𝛽2𝑥𝑖𝑗 + 𝜖𝑖𝑗 ,
and fit it using R:
rat_lm <- lm(y ~ week, data = rat.growth)
(rat_lm_sum <- summary(rat_lm))

Call:
lm(formula = y ~ week, data = rat.growth)

Residuals:
Min 1Q Median 3Q Max

-38.12 -11.25 0.28 7.68 54.15

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 156.053 2.246 69.47 <2e-16 ***
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week 43.267 0.917 47.18 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.88 on 148 degrees of freedom
Multiple R-squared: 0.9377, Adjusted R-squared: 0.9372
F-statistic: 2226 on 1 and 148 DF, p-value: < 2.2e-16

The resulting estimates are ̂𝛽1 = 156.05 and ̂𝛽2 = 43.27, with estimated standard errors 2.25 and 0.92,
respectively.

Figure 2.3 shows boxplots of the residuals from this model, separately for each rat. There is clear evidence
of unexplained differences between rats.
res <- residuals(rat_lm, type = "pearson")
ord <- order(ave(res, rat.growth$rat))
rats <- rat.growth$rat[ord]
rats <- factor(rats, levels = unique(rats), ordered = TRUE)
plot(res[ord] ~ rats,

xlab = "Rat (ordered by mean residual)",
ylab = "Pearson residual",
col = "#ff7518", pch = 21)

abline(h = 0, lty = 2)
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Figure 2.3: Boxplots of residuals from a simple linear regression, for each rat in the rat growth data.

2.4 Linear mixed models
2.4.1 Model definition
A linear mixed model (LMM) for observations 𝑦 = (𝑦1, … , 𝑦𝑛)⊤ has the general form

𝑌 ∣ 𝑋, 𝑍, 𝑏 ∼ N(𝜇, Σ) ,
𝜇 = 𝑋𝛽 + 𝑍𝑏 ,
𝑏 ∼ N(0, Σ𝑏) .

(2.5)

where 𝑋 and 𝑍 are matrices containing covariate values. Usually, Σ = 𝜎2𝐼𝑛. The unknown parameters
to be estimated are 𝛽, Σ, and Σ𝑏. The term mixed model highlights that the linear predictor 𝑋𝛽 + 𝑍𝑏
contains both the fixed effects 𝛽 and the random effects 𝑏.
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A typical example for clustered data is

𝑌𝑖𝑗 ∣ 𝑥𝑖𝑗, 𝑧𝑖𝑗, 𝑏𝑖
ind∼ N(𝜇𝑖𝑗, 𝜎2) ,

𝜇𝑖𝑗 = 𝑥⊤
𝑖𝑗𝛽 + 𝑧⊤

𝑖𝑗𝑏𝑖 ,
𝑏𝑖

ind∼ N(0, Σ∗
𝑏) ,

(2.6)

where 𝑥𝑖𝑗 contains the covariates for observation 𝑗 of the 𝑖th cluster, and 𝑧𝑖𝑗 the covariates which are
allowed to exhibit extra between-cluster variation in their relationship with the response. Typically, 𝑧𝑖𝑗
is a sub-vector of 𝑥𝑖𝑗, but this is not necessary.

The simplest case of a mixed effects linear predictor arises when 𝑧𝑖𝑗 = 1, which results in a random-
intercept model, as in (2.2).

A plausible LMM for 𝑘 clusters with 𝑛𝑖 observations in the 𝑖th cluster, and a single explanatory variable
(see, for example, Example 2.4) has

𝑌𝑖𝑗 = 𝛽1 + 𝑏1𝑖 + (𝛽2 + 𝑏2𝑖)𝑥𝑖𝑗 + 𝜖𝑖𝑗 , (𝑏1𝑖, 𝑏2𝑖)⊤ ind∼ N(0, Σ∗
𝑏) .

This fits into the general LMM definition in (2.5) with Σ = 𝜎2𝐼𝑛, and

𝑌 = ⎡⎢
⎣

𝑌1
⋮

𝑌𝑘

⎤⎥
⎦

, 𝑌𝑖 = ⎡⎢
⎣

𝑌𝑖1
⋮

𝑌𝑖𝑛𝑖

⎤⎥
⎦

,

𝑋 = ⎡⎢
⎣

𝑋1
⋯
𝑋𝑘

⎤⎥
⎦

, 𝑍 =
⎡
⎢⎢
⎣

𝑋1 0 ⋯ 0
0 𝑋2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑋𝑘

⎤
⎥⎥
⎦

, 𝑋𝑖 = ⎡⎢
⎣

1 𝑥𝑖1
⋮ ⋮
1 𝑥𝑖𝑛𝑖

⎤⎥
⎦

,

𝛽 = [𝛽1
𝛽2

] , 𝑏 =
⎡
⎢
⎢
⎢
⎣

𝑏11
𝑏21
⋮

𝑏1𝑘
𝑏2𝑘

⎤
⎥
⎥
⎥
⎦

, Σ𝑏 = ⎡⎢
⎣

Σ∗
𝑏 0 0

0 ⋱ 0
0 0 Σ∗

𝑏

⎤⎥
⎦

,

where Σ∗
𝑏 is an unknown 2 × 2 positive definite matrix, and 0 denotes a matrix of zeros of appropriate

dimension.

Under an LMM, we can write the marginal distribution of 𝑌 directly as

𝑌 ∣ 𝑋, 𝑍 ∼ N(𝑋𝛽, Σ + 𝑍Σ𝑏𝑍⊤) (2.7)

Hence, var(𝑌 ∣ 𝑋, 𝑍) is comprised of two variance components.

LMMs for clustered data, such as (2.6) are also known as hierarchical or multilevel models. This reflects
the two-stage structure of the model definition; a conditional model for the responses given covariates
and the random effects, followed by a marginal model for the random effects.

Sometimes the hierarchy can have further levels, corresponding to clusters nested within clusters. Com-
mon practical settings of that kind is patients within wards within hospitals, or pupils within classes
within schools.

2.4.2 Random effects or cluster-specific fixed effects
Instead of including random effects for clusters, e.g.

𝑌𝑖𝑗 = 𝛽1 + 𝑏1𝑖 + (𝛽2 + 𝑏2𝑖)𝑥𝑖𝑗 + 𝜖𝑖𝑗 ,

we could use separate fixed effects for each cluster, e.g.

𝑌𝑖𝑗 = 𝛽1𝑖 + 𝛽2𝑖𝑥𝑖𝑗 + 𝜖𝑖𝑗 .
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However, inferences can then only be made about those clusters present in the observed data. Random
effects models allow inferences to be extended to a wider population. It also can be the case that fixed
effects are not identifiable. That is the case in the setting of Example 2.1 where there is only one
observation per cluster. In contrast, random effects are identifiable and can be estimated. Random
effects also allow borrowing strength across clusters by shrinking fixed effects towards a common mean.

2.4.3 Estimation
The likelihood about 𝛽, Σ, Σ𝑏 is available from (2.7) as

𝑓(𝑦 ∣ 𝑋, 𝑍 ; 𝛽, Σ, Σ𝑏) ∝ |𝑉 |−1/2 exp(−1
2(𝑦 − 𝑋𝛽)⊤𝑉 −1(𝑦 − 𝑋𝛽)) (2.8)

where 𝑉 = Σ + 𝑍Σ𝑏𝑍⊤, and can be directly maximized.

However, the maximum likelihood estimators for the variance parameters of LMMs can have considerable
downward bias. The bias is more profound in cluster models with a small number of observed clusters,
and can affect the performance of inferential procedures. Hence estimation by REML (REstricted or
REsidual Maximum Likelihood) is usually preferred.

REML proceeds by estimating the variance parameters Σ and Σ𝑏 using a marginal likelihood based on
the residuals from a least squares fit of the model 𝐸(𝑌 ∣ 𝑋) = 𝑋𝛽.
Consider the vector of residuals (𝐼𝑛 − 𝐻)𝑌 , where 𝐻 = 𝑋(𝑋⊤𝑋)−1𝑋⊤ is the usual hat matrix. The
distribution of (𝐼𝑛 − 𝐻)𝑌 does not depend of 𝛽, but because (𝐼𝑛 − 𝐻) has rank 𝑛 − 𝑝, that distribution is
degenerate. From the spectral decomposition theorem, we can always define a vector of (𝑛 − 𝑝) random
variables 𝑈 = 𝐵⊤𝑌 , where 𝐵 is any 𝑛×(𝑛−𝑝) matrix of rank (𝑛−𝑝) with 𝐵𝐵⊤ = 𝐼𝑛−𝐻 and 𝐵⊤𝐵 = 𝐼𝑛−𝑝.
Then, 𝐵⊤𝑋 = 𝐵⊤𝐵𝐵⊤𝑋 = 𝐵(𝐼𝑛 − 𝐻)𝑋 = 0, and

𝑈 = 𝐵⊤𝑌 = 𝐵⊤(𝑋𝛽 + 𝐴) = 𝐵⊤𝐴 ,
where 𝐴 ∣ 𝑍 ∼ N(0, 𝑉 ). Hence, 𝑈 ∣ 𝑋, 𝑍 ∼ N(0, 𝐵⊤𝑉 𝐵), which does not depend on 𝛽. That observation
may, at first sight, appear as simply trading the dependence on 𝛽 with the dependence on 𝐵, which would
be useless for practical purposes because 𝐵 is not uniquely defined. However, it can be shown that the
distribution of 𝑈 depends neither on 𝛽 nor on the choice of 𝐵!

To see that, note that the least squares estimator of 𝛽 for known 𝑉 is
̂𝛽𝑉 = (𝑋⊤𝑉 −1𝑋)−1𝑋⊤𝑉 −1𝑌 = 𝛽 + (𝑋⊤𝑉 −1𝑋)−1𝑋⊤𝑉 −1𝐴 . (2.9)

So, ̂𝛽𝑉 − 𝛽 ∣ 𝑋, 𝑍 ∼ N(0, (𝑋⊤𝑉 −1𝑋)−1). Also,

E(𝑈( ̂𝛽𝑉 − 𝛽)⊤ ∣ 𝑋, 𝑍) = 𝐵⊤ E(𝐴𝐴⊤ ∣ 𝑍)𝑉 −1𝑋(𝑋⊤𝑉 −1𝑋)−1 = 0
Hence, since 𝑈 and ̂𝛽𝑉 − 𝛽 are both normally distributed, they are independent.

Temporarily suppressing the conditioning on 𝑋 and 𝑍 in the notation, we can write

𝑓(𝑢 ; Σ, Σ𝑏)𝑓( ̂𝛽𝑉 ; 𝛽, Σ, Σ𝑏) = 𝑓(𝑢, ̂𝛽𝑉 ; 𝛽, Σ, Σ𝑏)
= 𝑓(𝑄𝑦 ; 𝛽, Σ, Σ𝑏) = 𝑓(𝑦 ; 𝛽, Σ, Σ𝑏)|𝑄⊤|−1 ,

(2.10)

where 𝑄 = [𝐵⊤

𝐺⊤], 𝐺⊤ = (𝑋⊤𝑉 −1𝑋)−1𝑋⊤𝑉 −1, and |𝑄⊤| is the Jacobian determinant of the transformation
𝑄𝑦. We have

|𝑄⊤| = ∣[𝐵 𝐺]∣

= ∣[𝐵⊤

𝐺⊤] [𝐵 𝐺]∣
1/2

= ∣[𝐵⊤𝐵 𝐵⊤𝐺
𝐺⊤𝐵 𝐺⊤𝐺]∣

1/2

= |𝐵⊤𝐵|1/2|𝐺⊤𝐺 − 𝐺⊤𝐵(𝐵⊤𝐵)−1𝐵⊤𝐺|1/2

= |𝐺⊤𝐺 − 𝐺⊤(𝐼𝑛 − 𝐻)𝐺|1/2

= |(𝑋⊤𝑉 −1𝑋)−1𝑋⊤𝑉 −1𝑋(𝑋⊤𝑋)−1𝑋⊤𝑉 −1𝑋(𝑋⊤𝑉 −1𝑋)−1|1/2

= |𝑋⊤𝑋|−1/2 .
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So, from expression (2.10), a completion of the square in the ratio of the normal densities of 𝑦 and ̂𝛽𝑉
gives

𝑓(𝑢 ; Σ, Σ𝑏) = 𝑓(𝑦 ; 𝛽, Σ, Σ𝑏)
𝑓( ̂𝛽𝑉 ; 𝛽, Σ, Σ𝑏)

|𝑋⊤𝑋|1/2

∝ |𝑋⊤𝑋|1/2

|𝑉 |1/2|𝑋⊤𝑉 −1𝑋|1/2 exp(−1
2(𝑦 − 𝑋 ̂𝛽𝑉 )⊤𝑉 −1(𝑦 − 𝑋 ̂𝛽𝑉 )) ,

(2.11)

which does not involve 𝐵. Note that the maximized marginal likelihood cannot be used to compare
different fixed effects specifications, due to the dependence of 𝑈 on 𝑋.

2.4.4 Estimating random effects
A natural predictor ̃𝑏 of the random effect vector 𝑏 is obtained by minimizing the mean squared prediction
error E(( ̃𝑏 − 𝑏)⊤( ̃𝑏 − 𝑏) ∣ 𝑋, 𝑍) where the expectation is over both 𝑏 and 𝑌 . This is achieved by

̃𝑏 = E(𝑏 ∣ 𝑌 , 𝑋, 𝑍) = (𝑍⊤Σ−1𝑍 + Σ−1
𝑏 )−1𝑍⊤Σ−1(𝑌 − 𝑋𝛽) , (2.12)

which is the Best Linear Unbiased Predictor (BLUP) for 𝑏, with corresponding variance

var(𝑏 ∣ 𝑌 , 𝑋, 𝑍) = (𝑍⊤Σ−1𝑍 + Σ−1
𝑏 )−1 . (2.13)

We can obtain estimates of (2.13) and (2.13) by plugging in ̂𝛽, Σ̂, and Σ̂𝑏. The estimates of ̃𝑏 are typically
shrunk towards 0 relative to the corresponding fixed effects estimates.

Any component 𝑏𝑘 of 𝑏 with no relevant data (for example, a cluster effect for an as yet unobserved
cluster) corresponds to a null column of 𝑍. In that case, ̃𝑏𝑘 = 0 and var(𝑏𝑘 ∣ 𝑌 , 𝑋, 𝑍) = [Σ𝑏]𝑘𝑘, which
can be estimated in the common case that 𝑏𝑘 shares a variance with other random effects.

Example 2.5 (LMM for rat growth data). Here, we consider the model

𝑌𝑖𝑗 = 𝛽1 + 𝑏1𝑖 + (𝛽2 + 𝑏2𝑖)𝑥𝑖𝑗 + 𝜖𝑖𝑗 , (𝑏1𝑖, 𝑏2𝑖)⊤ ind∼ N(0, Σ𝑏) ,

where 𝜖𝑖𝑗
ind∼ N(0, 𝜎2) and Σ𝑏 is an unspecified covariance matrix. This model allows for random, cluster-

specific slope and intercept.

We may fit the model in R using the methods in the lme4 package:
library("lme4")

Loading required package: Matrix
rat_rs <- lmer(y ~ week + (week | rat), data = rat.growth)
rat_rs

Linear mixed model fit by REML ['lmerMod']
Formula: y ~ week + (week | rat)

Data: rat.growth
REML criterion at convergence: 1084.58
Random effects:
Groups Name Std.Dev. Corr
rat (Intercept) 10.933

week 3.535 0.18
Residual 5.817

Number of obs: 150, groups: rat, 30
Fixed Effects:
(Intercept) week

156.05 43.27

Let’s also consider the simpler random intercept model

𝑌𝑖𝑗 = 𝛽1 + 𝑏1𝑖 + 𝛽2𝑥𝑖𝑗 + 𝜖𝑖𝑗 , 𝑏1𝑖
ind∼ N(0, 𝜎2

𝑏 ) .
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rat_ri <- lmer(y ~ week + (1 | rat), data = rat.growth)
rat_ri

Linear mixed model fit by REML ['lmerMod']
Formula: y ~ week + (1 | rat)

Data: rat.growth
REML criterion at convergence: 1127.169
Random effects:
Groups Name Std.Dev.
rat (Intercept) 13.851
Residual 8.018

Number of obs: 150, groups: rat, 30
Fixed Effects:
(Intercept) week

156.05 43.27

We can compare the two models using AIC or BIC, but in order to do so we need to refit the models
with maximum likelihood rather than REML.
rat_rs_ML <- lmer(y ~ week + (week | rat), data = rat.growth, REML = FALSE)
rat_ri_ML <- lmer(y ~ week + (1 | rat), data = rat.growth, REML = FALSE)
anova(rat_rs_ML, rat_ri_ML)

Data: rat.growth
Models:
rat_ri_ML: y ~ week + (1 | rat)
rat_rs_ML: y ~ week + (week | rat)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
rat_ri_ML 4 1139.2 1151.2 -565.60 1131.2
rat_rs_ML 6 1101.1 1119.2 -544.56 1089.1 42.079 2 7.288e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

By either criterion, there is evidence for the random slopes model.

An alternative model would be a fixed effects model with separate intercepts and slopes for each rat

𝑌𝑖𝑗 = 𝛽1𝑖 + 𝛽2𝑖𝑥𝑖𝑗 + 𝜖𝑖𝑗 .

Figure Figure 2.4 shows parameter estimates from the random effects model against those from the fixed
effects model, illustrating the shrinkage of the random effect estimates towards a common mean. Random
effects estimates ‘borrow strength’ across clusters, due to the common Σ−1

𝑏 term in (2.12). The extent of
borrowing strength is determined by cluster similarity.
ranef_est <- coef(rat_rs)$rat
rat_lm3 <- lm(y ~ rat * week, data = rat.growth)

rats <- factor(1:30, levels = 1:30)
pred_rat_0 <- predict(rat_lm3,

newdata = data.frame(rat = rats, week = 0))
pred_rat_1 <- predict(rat_lm3,

newdata = data.frame(rat = rats, week = 1))
fixef_est <- data.frame("(Intercept)" = pred_rat_0,

"week" = pred_rat_1 - pred_rat_0)
intercept_range <- range(c(fixef_est[,1], ranef_est[,1]))
slope_range <- range(c(fixef_est[,2], ranef_est[,2]))

par(mfrow = c(1, 2))
plot(fixef_est[,1], ranef_est[,1],
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xlab = "Intercept estimate (fixed effects)",
ylab = "Intercept estimate (random effects)",
xlim = intercept_range, ylim = intercept_range,
bg = "#ff7518", pch = 21)

abline(lm(ranef_est[,1] ~ fixef_est[,1]), col = "grey")
abline(a = 0, b = 1, lty = 2)

plot(fixef_est[,2], ranef_est[,2],
xlab = "Slope estimate (fixed effects)",
ylab = "Slope estimate (random effects)",
xlim = slope_range,
ylim = slope_range,
bg = "#ff7518", pch = 21)

abline(lm(ranef_est[,2] ~ fixef_est[,2]), col = "grey")
abline(a = 0, b = 1, lty = 2)

140 150 160 170 180

14
0

15
0

16
0

17
0

18
0

Intercept estimate (fixed effects)

In
te

rc
ep

t e
st

im
at

e 
(r

an
do

m
 e

ffe
ct

s)

35 40 45 50

35
40

45
50

Slope estimate (fixed effects)

S
lo

pe
 e

st
im

at
e 

(r
an

do
m

 e
ffe

ct
s)

Figure 2.4: Estimates of random and fixed effects for the rat growth data. The dashed line is a line with
intercept zero and slope 1, and the solid line is from the least squares fit of the observed points.

2.4.5 Bayesian inference: the Gibbs sampler
Bayesian inference for LMMs (and their generalizations, which we will introduce later) proceeds using
Markov Chain Monte Carlo (MCMC) methods, such as the Gibbs sampler, that have proved very effective
in practice.

MCMC computation provides posterior summaries, by generating a dependent sample from the posterior
distribution of interest. Then, any posterior expectation can be estimated by the corresponding Monte
Carlo sample mean, densities can be estimated from samples, etc.

MCMC will be covered in detail in the Computer Intensive Statistics APTS module. Here we simply
describe the (most basic) Gibbs sampler.

To generate from 𝑓(𝑦1, … , 𝑦𝑛), where the components 𝑦𝑖 are allowed to be multivariate, the Gibbs sampler
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starts from an arbitrary value of 𝑦 and updates components, sequentially or otherwise, by generating from
the conditional distributions 𝑓(𝑦𝑖 ∣ 𝑦�𝑖) where 𝑦�𝑖 are all the variables other than 𝑦𝑖, set at their currently
generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions which are available for sampling.

For the linear mixed model

𝑌 ∣ 𝑋, 𝑍, 𝛽, Σ, 𝑏 ∼ N(𝜇, Σ), 𝜇 = 𝑋𝛽 + 𝑍𝑏, 𝑏 ∣ Σ𝑏 ∼ N(0, Σ𝑏) ,

and prior densities 𝜋(𝛽), 𝜋(Σ), 𝜋(Σ𝑏), we obtain the conditional posterior distributions

𝑓(𝛽 ∣ 𝑦, rest) ∝ 𝜙(𝑦 − 𝑍𝑏 ; 𝑋𝛽, 𝑉 )𝜋(𝛽) ,
𝑓(𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑦 − 𝑋𝛽 ; 𝑍𝑏, 𝑉 )𝜙(𝑏 ; 0, Σ𝑏) ,
𝑓(Σ ∣ 𝑦, rest) ∝ 𝜙(𝑦 − 𝑋𝛽 − 𝑍𝑏 ; 0, 𝑉 )𝜋(Σ) ,

𝑓(Σ𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑏 ; 0, Σ𝑏)𝜋(Σ𝑏) ,

where 𝜙(𝑦 ; 𝜇, Σ) is the density of a N(𝜇, Σ) random variable evaluated at 𝑦.
We can exploit conditional conjugacy in the choices of 𝜋(𝛽), 𝜋(Σ), 𝜋(Σ𝑏) making the conditionals above of
known form and, hence, straightforward to sample from. The conditional independence (𝛽, Σ) ⟂⟂ Σ𝑏 ∣ 𝑏
is also helpful in that direction.

2.5 Generalized linear mixed models
2.5.1 Model setup
Generalized linear mixed models (GLMMs) generalize LMMs to non-normal responses, similarly to how
generalized linear models generalize normal linear models. A GLMM has

𝑌𝑖 ∣ 𝑥𝑖, 𝑧𝑖, 𝑏 ind∼ EF(𝜇𝑖, 𝜎2) ,

⎡⎢
⎣

𝑔(𝜇1)
⋮

𝑔(𝜇𝑛)
⎤⎥
⎦

= 𝑋𝛽 + 𝑍𝑏 ,

𝑏 ∼ N(0, Σ𝑏) ,

(2.14)

where EF(𝜇𝑖, 𝜎2) is an exponential family distribution with mean 𝜇𝑖 and variance 𝜎2𝑉 (𝜇𝑖)/𝑚𝑖 for known
𝑚𝑖. For many well-used distributions, like binomial and Poisson, 𝜎2 = 1. For the shake of not complicating
presentation, we shall assume that from here on.

The normality of the random effects 𝑏 can be relaxed in many ways and to other distributions, but normal
random effects usually provide adequate fits. Non-normal random effects distributions are beyond the
scope of this module.

Example 2.6. A random-intercept GLMM for binary data in 𝑘 clusters with 𝑛1, … , 𝑛𝑘 observations per
cluster, and a single explanatory variable 𝑥 (e.g. the setting for the toxoplasmosis data at individual level)
is

𝑌𝑖𝑗 ∣ 𝑥𝑖𝑗, 𝑏𝑖
ind∼ Bernoulli(𝜇𝑖𝑗)

log
𝜇𝑖𝑗

1 − 𝜇𝑖𝑗
= 𝛽1 + 𝑏𝑖 + 𝛽2𝑥𝑖𝑗

𝑏𝑖
ind∼ N(0, 𝜎2

𝑏 )

(2.15)

This model fits into the general GLMM framework in (3.1) with

𝑌 = ⎡⎢
⎣

𝑌1
⋮

𝑌𝑘

⎤⎥
⎦

, 𝑌𝑖 = ⎡⎢
⎣

𝑌𝑖1
⋮

𝑌𝑖𝑛𝑖

⎤⎥
⎦

,
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𝑋 = ⎡⎢
⎣

𝑋1
⋯
𝑋𝑘

⎤⎥
⎦

, 𝑋𝑖 = ⎡⎢
⎣

1 𝑥𝑖1
⋮ ⋮
1 𝑥𝑖𝑛𝑖

⎤⎥
⎦

,

𝑍 =
⎡
⎢⎢
⎣

𝑍1 0 ⋯ 0
0 𝑍2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑍𝑘

⎤
⎥⎥
⎦

, 𝑍𝑖 = ⎡⎢
⎣

1
⋮
1
⎤⎥
⎦

,

𝛽 = [𝛽1
𝛽2

] , 𝑏 = ⎡⎢
⎣

𝑏1
⋮

𝑏𝑘

⎤⎥
⎦

, Σ𝑏 = 𝜎2
𝑏 𝐼𝑘 ,

and 𝑔(𝜇) = log{𝜇/(1 − 𝜇)}.

2.5.2 GLMM likelihood
The marginal distribution of 𝑌 in a GLMM does not usually have a convenient closed-form representation.

𝑓(𝑦 ∣ 𝑋, 𝑍 ; 𝛽, Σ𝑏) = ∫ 𝑓(𝑦 ∣ 𝑋, 𝑍, 𝑏 ; 𝛽, Σ𝑏)𝑓(𝑏 ; 𝛽, Σ𝑏)𝑑𝑏

= ∫ 𝑓(𝑦 ∣ 𝑋, 𝑍, 𝑏 ; 𝛽)𝑓(𝑏 ; Σ𝑏)𝑑𝑏

= ∫
𝑛

∏
𝑖=1

𝑓 (𝑦𝑖 ∣ 𝑋, 𝑍, 𝑏 ; 𝛽)) 𝑓(𝑏 ; Σ𝑏)𝑑𝑏 .

(2.16)

For nested random effects structures, some simplification is possible. For example, for (2.15),

𝑓(𝑦 ∣ 𝑋, 𝑍 ; 𝛽, 𝜎2
𝑏 ) =

𝑘
∏
𝑖=1

∫ ∏
𝑗

𝑓 (𝑦𝑖𝑗 ∣ 𝑥𝑖, 𝑏𝑖 ; 𝛽)) 𝜙(𝑏𝑖 ; 0, 𝜎2
𝑏 )𝑑𝑏𝑖 ,

which is a product of one-dimensional integrals.

Fitting a GLMM by likelihood methods requires some method for approximating the integrals involved.

When the integrals are of low dimension, a reliable method is to use Gaussian quadrature (see APTS:
Statistical Computing). For example, for an one-dimensional cluster-level random effect 𝑏𝑖 we might use

∫ ∏
𝑗

𝑓 (𝑦𝑖𝑗 ∣ 𝑥𝑖, 𝑏𝑖 ; 𝛽)) 𝜙(𝑏𝑖 ; 0, 𝜎2
𝑏 )𝑑𝑏𝑖

≈
𝑄

∑
𝑞=1

𝑊𝑞 ∏
𝑗

𝑓 (𝑦𝑖𝑗 ∣ 𝑥𝑖,
√

2𝜎𝑏𝐵𝑞 ; 𝛽)) /√𝜋 ,

for weights 𝑊𝑞 and quadrature points 𝐵𝑞 (𝑞 = 1, … , 𝑄) chosen according to the Gauss-Hermite quadrature
rule.

Effective quadrature approaches use information about the mode and dispersion of the integrand, which
can be done adaptively. For multi-dimensional 𝑏𝑖, quadrature rules can be applied recursively, but
performance in fixed-time diminishes rapidly with dimension.

An alternative approach is to use a Laplace approximation to the likelihood. Writing

ℎ(𝑏) =
𝑛

∏
𝑖=1

𝑓 (𝑦𝑖 ∣ 𝑋, 𝑍, 𝑏 ; 𝛽) 𝑓(𝑏 ; Σ𝑏)

for the integrand of the likelihood, a first-order Laplace approximation approximates ℎ(.) as an unnor-
malised multivariate normal density function

ℎ̃(𝑏) = 𝑐 𝜙𝑘(𝑏 ; ̂𝑏, 𝑄) ,
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where ̂𝑏 is found by maximizing logℎ(.) over 𝑏, the variance matrix 𝑄 is chosen so that the curvature of
logℎ(.) and log ℎ̃(.) agree at ̂𝑏, and 𝑐 is chosen so that ℎ̃( ̂𝑏) = ℎ( ̂𝑏). The first-order Laplace approximation
is equivalent to adaptive Gaussian quadrature with a single quadrature point.

Likelihood inference for GLMMs remains an area of active research and vigorous debate. Quadrature-
based procedures provides accurate approximations to the likelihood. For some model structures, par-
ticularly those with crossed rather than nested random effects, the likelihood integral may be high-
dimensional, and it may be impractical to use quadrature. In such cases, a Laplace approximation has
been found to be sufficiently accurate for most purposes, but its accuracy is not guaranteed for every
model.

Another alternative is to use Penalized Quasi Likelihood (PQL), which is very fast but often inaccurate.
In, particular, PQL can fail badly in some cases, particularly with binary observations, and its use is not
recommended.

Example 2.7 (Toxoplasmosis data (revisited)). For the toxoplasmosis data in Example 2.1, Table 2.1
gives the estimates and associated standard errors for the parameters of individual-level model (2.15),
after dividing the annual rainfall by 105. The fits are obtained using maximum likelihood (with 25
quadrature points), Laplace approximation, and PQL.
library("MASS")
library("lme4")
library("modelsummary")
toxo$city <- 1:nrow(toxo)
toxo$rain_s <- toxo$rain / 100000
mod_lmm_quad <- glmer(r/m ~ rain_s + (1 | city), weights = m,

data = toxo, family = binomial, nAGQ = 25)
mod_lmm_LA <- glmer(r/m ~ rain_s + (1 | city), weights = m,

data = toxo, family = binomial)
mod_lmm_PQL <- glmmPQL(fixed = r/m ~ rain_s, random = ~ 1 | city, weights = m,

data = toxo, family = binomial)
modelsummary(

list("GH (25)" = mod_lmm_quad,
"Laplace" = mod_lmm_LA,
"PQL" = mod_lmm_PQL),

output = "markdown",
escape = FALSE,
gof_map = "none",
fmt = fmt_decimal(digits = 3),
coef_omit = 4,
coef_rename = c("$\\beta_1$", "$\\beta_2$", "$\\sigma_b$"))

Table 2.1: Estimates and associated standard errors for the parameters of the linear individual-level
model (2.15). ‘GH (25)’ is maximum likelihood using 25 Gauss-Hermite quadrature points, ‘Laplace’ is
maximum approximate likelihood based on Laplace approximation, and ‘PQL’ is maximum PQL.

GH (25) Laplace PQL
𝛽1 -0.138 -0.134 -0.115

(1.450) (1.441) (1.445)
𝛽2 0.722 0.592 0.057

(75.060) (74.620) (74.922)
𝜎𝑏 0.521 0.513 0.495

Table 2.2 shows the estimates for the corresponding GLMM, when the conditional mean of the incidence
in toxoplasmosis is associated with an orthogonal polynomial to rainfall (after division by 105); see ?poly.
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mod_lmm_cubic_quad <- glmer(r/m ~ poly(rain_s, 3) + (1 | city), weights = m,
data = toxo, family = binomial, nAGQ = 25)

mod_lmm_cubic_LA <- glmer(r/m ~ poly(rain_s, 3) + (1 | city), weights = m,
data = toxo, family = binomial)

mod_lmm_cubic_PQL <- glmmPQL(fixed = r/m ~ poly(rain_s, 3), random = ~ 1 | city, weights = m,
data = toxo, family = binomial)

modelsummary(
list("GH (25)" = mod_lmm_cubic_quad,

"Laplace" = mod_lmm_cubic_LA,
"PQL" = mod_lmm_cubic_PQL),

output = "markdown",
escape = FALSE,
gof_map = "none",
fmt = fmt_decimal(digits = 3),
coef_omit = 6,
coef_rename = c("$\\beta_1$", "$\\beta_2$", "$\\beta_3$", "$\\beta_4$", "$\\sigma_b$"))

Table 2.2: Estimates and associated standard errors for the parameters of the cubic individual-level
model. ‘GH (25)’ is maximum likelihood with 25 Gauss-Hermite quadrature points, ‘Laplace’ is maximum
approximate likelihood based on Laplace approximation, and ‘PQL’ is maximum PQL.

GH (25) Laplace PQL
𝛽1 -0.106 -0.104 -0.110

(0.127) (0.126) (0.127)
𝛽2 -0.106 -0.107 -0.098

(0.687) (0.682) (0.718)
𝛽3 0.154 0.149 0.173

(0.700) (0.695) (0.724)
𝛽4 1.628 1.626 1.607

(0.654) (0.649) (0.682)
𝜎𝑏 0.423 0.417 0.431

There is a good agreement between the different estimation methods for the models considered in this
example. The AIC and BIC (using 25 Gauss-Hermite quadrature points for the likelihood approximation)
for the linear and the cubic individual-level models are
anova(mod_lmm_cubic_quad, mod_lmm_quad)

Data: toxo
Models:
mod_lmm_quad: r/m ~ rain_s + (1 | city)
mod_lmm_cubic_quad: r/m ~ poly(rain_s, 3) + (1 | city)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
mod_lmm_quad 3 65.754 70.333 -29.877 59.754
mod_lmm_cubic_quad 5 63.840 71.472 -26.920 53.840 5.9139 2 0.05198 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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2.5.3 Bayesian inference for GLMMs
As for LMMs, Bayesian inference in GLMMs is typically based on the Gibbs sampler. For the GLMM in
(3.1), with prior densities 𝜋(𝛽) and 𝜋(Σ𝑏) and known 𝜎2, we obtain the conditional posterior distributions

𝑓(𝛽 ∣ 𝑦, rest) ∝ 𝜋(𝛽) ∏
𝑖

𝑓(𝑦𝑖 ∣ 𝑋, 𝑍, 𝛽, 𝑏)

𝑓(𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑏 ; 0, Σ𝑏) ∏
𝑖

𝑓(𝑦𝑖 ∣ 𝑋, 𝑍, 𝛽, 𝑏)

𝑓(Σ𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑏 ; 0, Σ𝑏)𝜋(Σ𝑏) ,

For a conditionally conjugate choice of 𝜋(Σ𝑏), 𝑓(Σ𝑏 ∣ 𝑦, rest) is straightforward to sample from. The
conditionals for 𝛽 and 𝑏 are not generally available for direct sampling. However, there are a number of
ways of modifying the basic Gibbs sampling to go around this.
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Nonlinear models

The combination of some data and an aching desire for an answer does not ensure that a
reasonable answer can be extracted from a given body of data.

— John W. Tukey (1915–2000)

in Tukey (1986). Sunset Salvo. The American Statistician, 40 (1), p. 74.

3.1 Nonlinear models with fixed effects
So far we have only considered models where the link function of the mean response is equal to a linear
predictor. For example, GLMMs, which are the most general models we have seen so far, have

𝑌𝑖 ∣ 𝑥𝑖, 𝑧𝑖, 𝑏 ind∼ EF(𝜇𝑖, 𝜎2) ,

⎡⎢
⎣

𝑔(𝜇1)
⋮

𝑔(𝜇𝑛)
⎤⎥
⎦

= 𝜂 = 𝑋𝛽 + 𝑍𝑏 ,

𝑏 ∼ N(0, Σ𝑏) ,

(3.1)

where EF(𝜇𝑖, 𝜎2) is an exponential family distribution with mean 𝜇𝑖 and variance 𝜎2𝑉 (𝜇𝑖)/𝑚𝑖 for known
𝑚𝑖. The key point is that the predictor 𝜂 is a linear function of the parameters. Linear models, generalized
linear models and linear mixed models are all special cases of the GLMM.

Models with linear predictors form the basis of most applied statistical analyses. It is often the case,
though, that there is no scientific reason to believe these linear models are true for a given application.

We begin by considering nonlinear extensions of the normal linear model

𝑌𝑖 = 𝑥⊤
𝑖 𝛽 + 𝜖𝑖 , (3.2)

where 𝜖1, … , 𝜖𝑛 are independent with 𝜖𝑖 ∼ N(0, 𝜎2), and 𝛽 are the 𝑝 regression parameters.

Instead of the mean response being the linear predictor 𝑥⊤
𝑖 𝛽, we may allow it to be a nonlinear function

of parameters, that is
𝑌𝑖 = 𝜂(𝑥𝑖, 𝛽) + 𝜖𝑖 , (3.3)

where 𝜖1, … , 𝜖𝑛 are independent with 𝜖𝑖 ∼ N(0, 𝜎2), and 𝜂(𝑥𝑖, 𝛽) is a nonlinear function of covariates and
parameters 𝛽.
The linear model (3.2) is a special case of the model specified by (3.3) for 𝜂(𝑥, 𝛽) = 𝑥⊤𝛽.
Parameters in nonlinear models can be of two different types:

• Physical parameters that have particular meaning in the subject-area where the model comes from.
Estimating the value of physical parameters, then, contributes to scientific understanding.
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• Tuning parameters that do not necessarily have any physical meaning. Their presence is justified as
a simplification of a more complex underlying system. The aim when estimating them is to make
the model represent reality as well as possible.

The function 𝜂(𝑥, 𝛽) can be specified in two ways:

• Mechanistically: prior scientific knowledge is incorporated into building a mathematical model for
the mean response. That model can often be complex and 𝜂(𝑥, 𝛽) may not be available in closed
form.

• Phenomenologically (empirically): a function 𝜂(𝑥, 𝛽) may be posited that appears to capture the
non-linear nature of the mean response.

Example 3.1 (Calcium uptake). The calcium dataset in the SMPracticals R package provides data
on the uptake of calcium (cal; in nmoles per mg) at set times (time; in minutes) by 27 cells in “hot”
suspension. Figure 3.1 shows calcium uptake against time.
data("calcium", package = "SMPracticals")
plot(cal ~ time, data = calcium,

xlab = "Time (minutes)",
ylab = "Calcium uptake (nmoles/mg)",
bg = "#ff7518", pch = 21)
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Figure 3.1: Calcium uptake against time.

We see that calcium uptake grows with time. There is a large class of phenomenological models for growth
curves.

Consider the non-linear model with

𝜂(𝑥, 𝛽) = 𝛽0 (1 − exp (−𝑥/𝛽1)) . (3.4)

This is derived by assuming that the rate of growth is proportional to the calcium remaining, i.e.

𝑑𝜂
𝑑𝑥 = (𝛽0 − 𝜂)/𝛽1 .
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The solution to this differential equation, with initial condition 𝜂(0, 𝛽) = 0, is (3.4). Here, 𝛽0 is the
calcium uptake after infinite time, and 𝛽1 controls its growth rate.

We use R to fit a model assumes a linear relationship of calcium uptake with time, a model that assumes
a quadratic relationship, and the model specified by (3.4).
calc_lm1 <- lm(cal ~ time, data = calcium)
calc_lm2 <- lm(cal ~ time + I(time^2), data = calcium)
calc_nlm <- nls(cal~ beta0 * ( 1 - exp(-time/beta1)), data = calcium,

start = list(beta0 = 5, beta1 = 5))

Figure 3.2 shows fitted curves for the three different models overlaid on the scatterplot of calcium uptake
against time.
newdata <- data.frame(time = seq(min(calcium$time), max(calcium$time), length.out = 100))
pred_lm1 <- predict(calc_lm1, newdata = newdata)
pred_lm2 <- predict(calc_lm2, newdata = newdata)
pred_nlm <- predict(calc_nlm, newdata = newdata)
plot(cal ~ time, data = calcium,

xlab = "Time (minutes)",
ylab = "Calcium uptake (nmoles/mg)",
bg = "#ff7518", pch = 21)

lines(newdata$time, pred_lm1, col = gray(0.8), lty = 1, lwd = 2)
lines(newdata$time, pred_lm2, col = gray(0.6), lty = 2, lwd = 2)
lines(newdata$time, pred_nlm, col = gray(0.4), lty = 3, lwd = 2)
legend("bottomright", legend = c("LM (linear)", "LM (quadratic)", "NLM"),

col = gray(c(0.8, 0.6, 0.4)), lty = 1:3, lwd = 2)
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Figure 3.2: Calcium uptake against time, overlaid by estimated expected uptake from three models.

A comparison of the three models in terms of number of parameters, maximized log-likelihood value, and
AIC and BIC returns
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models <- list(`LM (linear)` = calc_lm1,
`LM (quadratic)` = calc_lm2,
`NLM` = calc_nlm)

out <- sapply(models, function(m) {
c(p = length(coef(m)),
loglik = logLik(m),
AIC = AIC(m),
BIC = BIC(m))

})
round(t(out), 3)

p loglik AIC BIC
LM (linear) 2 -28.701 63.403 67.290
LM (quadratic) 3 -20.955 49.910 55.093
NLM 2 -20.955 47.909 51.797

The maximized log-likelihoods from the quadratic and nonlinear model are identical up to 3 decimal
places. The nonlinear model has is more parsimonious with fewer parameters. As a result it has lower
AIC and BIC, and would be the preferred model.

3.2 Nonlinear mixed effects models
Example 3.2 (Theophylline data). Theophylline is an anti-asthmatic drug. An experiment was per-
formed on 12 individuals to investigate the way in which the drug leaves the body. The study of drug
concentrations inside organisms is called pharmacokinetics.

An oral dose was given to each individual at time 𝑡 = 0, and the concentration of theophylline in the
blood was then measured at 11 time points in the next 25 hours.

Let 𝑌𝑖𝑗 be the theophylline concentration (mg/L) for individual 𝑖 at time 𝑡𝑖𝑗, and 𝐷𝑖 the dose that was
administered.

Figure 3.3 shows the concentration of theophylline against time for each of the individuals. There is a
sharp increase in concentration followed by a steady decrease.
data("Theoph", package = "datasets")
plot(conc ~ Time, data = Theoph, type = "n",

ylab = "Concentration (mg/L)", xlab = "Time (hours)")
for (i in 1:30) {

dat_i <- subset(Theoph, Subject == i)
lines(conc ~ Time, data = dat_i, col = "grey")

}
points(conc ~ Time, data = Theoph,

bg = "#ff7518", pch = 21, col = "grey")
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Figure 3.3: Concentration of theophylline against time for each of the individuals in the study.

Compartmental models are a common class of model used in pharmacokinetics studies. If the initial
dosage is 𝐷, then a pharmacokinetic model with a first-order compartment function is

𝜂(𝛽, 𝐷, 𝑡) = 𝐷𝛽1𝛽2
𝛽3(𝛽2 − 𝛽1) (exp (−𝛽1𝑡) − exp (−𝛽2𝑡)) , (3.5)

where the parameters 𝛽1, 𝛽2, 𝛽3 are all positive and have natural interpretations as follows:

• 𝛽1: the elimination rate which controls the rate at which the drug leaves the organism;

• 𝛽2: the absorption rate which controls the rate at which the drug enters the blood;

• 𝛽3: the clearance which controls the volume of blood for which a drug is completely removed per
time unit.

Since all the parameters are positive, and their estimation will most probably require a gradient descent
step (e.g. what some of the methods in optim do), it is best to rewrite expression (3.5) in terms of
𝛾𝑖 = 𝑙𝑜𝑔(𝛽𝑖), which can take values on the whole real line. We can write

𝜂′(𝛾, 𝐷, 𝑡) = 𝜂(𝛽, 𝐷, 𝑡) = 𝐷exp(− exp(𝛾1)𝑡) − exp(− exp(𝛾2)𝑡)
exp(𝛾3 − 𝛾1) − exp(𝛾3 − 𝛾2) . (3.6)

Let’s initially ignore the dependence induced from repeated measurements on individuals and fit the
nonlinear model

𝑌𝑖𝑗 = 𝜂′(𝛾, 𝐷𝑖, 𝑡𝑖𝑗) + 𝜖𝑖𝑗 , (3.7)

where 𝜖𝑖𝑗
ind∼ N(0, 𝜎2).

fm <- conc ~ Dose *
(exp(-exp(gamma1) * Time) - exp(-exp(gamma2) * Time)) /
(exp(gamma3 - gamma1) - exp(gamma3 - gamma2))

(pkm <- nls(fm, start = list(gamma1 = 0, gamma2 = -1, gamma3 = -1),
data = Theoph))
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Nonlinear regression model
model: conc ~ Dose * (exp(-exp(gamma1) * Time) - exp(-exp(gamma2) * Time))/(exp(gamma3 - gamma1) - exp(gamma3 - gamma2))
data: Theoph

gamma1 gamma2 gamma3
0.3992 -2.5242 -3.2483
residual sum-of-squares: 274.4

Number of iterations to convergence: 8
Achieved convergence tolerance: 3.709e-06

The estimates for 𝛽1, 𝛽2 and 𝛽3 are
setNames(exp(coef(pkm)), paste0("beta", 1:3))

beta1 beta2 beta3
1.49066465 0.08011951 0.03884169

and, using the delta method, the corresponding estimated standard errors are
setNames(exp(coef(pkm)) * coef(summary(pkm))[, "Std. Error"], paste0("beta", 1:3))

beta1 beta2 beta3
0.175208160 0.008840925 0.002889612

Figure 3.4 shows boxplots of the residuals from fitting the model in (3.7), separately for each subject. We
see evidence of unexplained differences between individuals.
res <- residuals(pkm, type = "pearson")
ord <- order(ave(res, Theoph$Subject))
subj <- Theoph$Subject[ord]
subj <- factor(subj, levels = unique(subj), ordered = TRUE)
plot(res[ord] ~ subj,

xlab = "Subject (ordered by mean residual)",
ylab = "Pearson residual",
col = "#ff7518", pch = 21)

abline(h = 0, lty = 2)
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Figure 3.4: Residuals for each individual in the theopylline study from model (3.7).

Further evidence of unexplained differences is found in Figure 3.5, which shows the estimated curves from
model (3.7) per individual. Accounting for heterogeneity between individuals seems worthwhile towards
getting a better fit.
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library("ggplot2")
st <- unique(Theoph[c("Subject", "Dose")])
pred_df <- as.list(rep(NA, nrow(st)))
for (i in seq.int(nrow(st))) {

pred_df[[i]] <- data.frame(Time = seq(0, 25, by = 0.2),
Dose = st$Dose[i],
Subject = st$Subject[i])

}
pred_df <- do.call("rbind", pred_df)
pred_df$conc <- predict(pkm, newdata = pred_df)
## Order according to mean residual
theoph <- within(Theoph, Subject <- factor(Subject, levels = unique(subj), ordered = TRUE))
fig_theoph <- ggplot(theoph) +

geom_point(aes(Time, conc), col = "#ff7518") +
geom_hline(aes(yintercept = Dose), col = "grey", lty = 3) +
facet_wrap(~ Subject, ncol = 3) +
labs(y = "Concentration (mg/L)", x = "Time (hours)") +
theme_bw()

fig_theoph +
geom_line(data = pred_df, aes(Time, conc), col = "grey")
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Figure 3.5: Estimated concentrations (grey) for each individual in the theopylline study from model (3.7).
The dotted line is the administered dose.

A nonlinear mixed effects model that accounts for heterogeneity between clusters is

𝑌𝑖𝑗 = 𝜂(𝛽 + 𝑏𝑖, 𝑥𝑖𝑗) + 𝜖𝑖𝑗,
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where 𝜖𝑖𝑗
ind∼ N(0, 𝜎2), 𝑏𝑖

ind∼ N(0, Σ𝑏), and Σ𝑏 is a 𝑞 × 𝑞 covariance matrix.

The above model specifies that 𝛽 + 𝑏𝑖 are parameters specific to the 𝑖th cluster with their relationship to
the covariates being perhaps nonlinear.

For example, a mixed effects extension of model (3.7) for the Theophylline data, allows each individual to
have distinct log-elimination rate, log-absorption rate and log-clearance, with joint distribution N(𝛾, Σ𝑏).
The means 𝛾 of the cluster-specific parameters across all individuals are the population parameters.
Note that adding normally distributed random variables to 𝛾1, 𝛾2, 𝛾3 (the logarithms of elimination rate,
absorption rate and clearance) is less controversial than adding normally distributed random variables to
𝛽1, 𝛽2, 𝛽3, which should be necessarily positive.

It is sometimes useful to specify the model in a way such that only a subset of the parameters can be
different for each cluster, and the remainder fixed for all clusters. Suppose there are 𝑞 ≤ 𝑝 parameters
that can be different for each cluster. Then, a more general way of writing the nonlinear mixed model is

𝑌𝑖𝑗 = 𝜂(𝛽 + 𝐴𝑏𝑖, 𝑥𝑖𝑗) + 𝜖𝑖𝑗 , (3.8)

where 𝜖𝑖𝑗
ind∼ N(0, 𝜎2) and 𝑏𝑖

ind∼ N(0, Σ𝑏). Here Σ𝑏 is a 𝑞 × 𝑞 covariance matrix and 𝐴 is a 𝑝 × 𝑞 matrix of
zeros and ones, which determines which parameters are fixed and which are varying.

The linear mixed model is a special case of the nonlinear mixed model with

𝜂(𝛽 + 𝐴𝑏𝑖, 𝑥𝑖𝑗) = 𝑥⊤
𝑖𝑗 (𝛽 + 𝐴𝑏𝑖) = 𝑥⊤

𝑖𝑗𝛽 + 𝑥⊤
𝑖𝑗𝐴𝑏𝑖 = 𝑥⊤

𝑖𝑗𝛽 + 𝑧⊤
𝑖𝑗𝑏𝑖 .

If the first element of 𝑥𝑖𝑗 is 1 for all 𝑖 and 𝑗, then a random intercept model results for 𝑞 = 1 and
𝐴 = (1, 0, … , 0)⊤.

Example 3.3 (Theophylline data (revisited)). We use the nlme R package to fit a nonlinear mixed model
that allows all the parameters to vary across individuals, i.e. 𝐴 = 𝐼3.
library("nlme")
pkmR <- nlme(fm,

fixed = gamma1 + gamma2 + gamma3 ~ 1,
random = gamma1 + gamma2 + gamma3 ~ 1,
groups = ~ Subject,
start = coef(pkm),
control = lmeControl(msMaxIter = 500, maxIter = 500),
data = Theoph)

pkmR

Nonlinear mixed-effects model fit by maximum likelihood
Model: fm
Data: Theoph
Log-likelihood: -173.32
Fixed: gamma1 + gamma2 + gamma3 ~ 1
gamma1 gamma2 gamma3

0.4514513 -2.4326850 -3.2144578

Random effects:
Formula: list(gamma1 ~ 1, gamma2 ~ 1, gamma3 ~ 1)
Level: Subject
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
gamma1 0.6376932 gamma1 gamma2
gamma2 0.1310518 0.012
gamma3 0.2511873 -0.089 0.995
Residual 0.6818359

Number of Observations: 132
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Number of Groups: 12

The estimates for the population parameters 𝛽 are
setNames(exp(fixef(pkmR)), paste0("beta", 1:3))

beta1 beta2 beta3
1.57058986 0.08780077 0.04017711

and, using the delta method, the corresponding estimated standard errors are
setNames(exp(fixef(pkmR)) * coef(summary(pkmR))[, "Std.Error"], paste0("beta", 1:3))

beta1 beta2 beta3
0.308184354 0.005533699 0.003238213

Instead of reporting the estimate of Σ𝑏, the output provides estimates of the standard deviation of each
random effect (StdDev), computed as the square roots of the diagonal elements of the estimate of Σ𝑏, and
the correlation of the random effects (Corr). A first observation from the output is that the estimated
variance of the random effect for the logarithm of the absorption rate (random effect with mean 𝛾2) is
considerably smaller than those for the other two random effects, and that that random effect is is highly
correlated to that with mean 𝛾3.

Let’s examine the quality of the fit of a model that allows random effects with means 𝛾1 and 𝛾3, and just
a population parameter for the logarithm of the absorption rate. Such a nonlinear mixed effects model
has

𝑌𝑖𝑗 = 𝜂′ ⎛⎜
⎝

⎡⎢
⎣

𝛾1 + 𝑏𝑖1
𝛾2

𝛾3 + 𝑏𝑖3

⎤⎥
⎦

, 𝐷𝑖, 𝑡𝑖𝑗
⎞⎟
⎠

+ 𝜖𝑖𝑗 , (3.9)

where 𝜖𝑖𝑗
ind∼ N(0, 𝜎2), (𝑏𝑖1, 𝑏𝑖3)⊤ ind∼ N(0, Σ𝑏). This corresponds to (3.8) with

𝐴 = ⎡⎢
⎣

1 0
0 0
0 1

⎤⎥
⎦

and 𝑏𝑖 = [𝑏𝑖1
𝑏𝑖3

] .

A comparison of model (3.9) to the model with all effects varying across individuals gives weak evidence
against the former.
pkmR_2 <- update(pkmR, random = gamma1 + gamma3 ~ 1)
anova(pkmR, pkmR_2)

Model df AIC BIC logLik Test L.Ratio p-value
pkmR 1 10 366.6399 395.468 -173.3200
pkmR_2 2 7 368.0464 388.226 -177.0232 1 vs 2 7.406425 0.06

Indeed, the fit with 𝛾2 not varying has AIC 368.05 which is just higher than the AIC 366.64 of the full
model, and BIC 388.23 which is smaller than the BIC 395.47 of the full model.

Figure 3.6 shows the estimated curves per subject from model (3.7) that ignores repeated measurements,
and from the nonlinear mixed effects models with two and three effects varying across individuals. We
can see that the nonlinear mixed effects models result in good fits. The estimated curved from the two
mixed effects models are almost identical, apart from a slight deviation at the tail of the estimated curve
from model (3.9) for individual 1.
conc_nlm <- pred_df$conc
conc_nlme_2 <- predict(pkmR_2, newdata = pred_df)
conc_nlme_3 <- predict(pkmR, newdata = pred_df)
pred_df_all <- pred_df[c("Subject", "Dose", "Time")]
pred_df_all <- rbind(

data.frame(pred_df_all, conc = conc_nlm, model = "NLM"),
data.frame(pred_df_all, conc = conc_nlme_2, model = "NLME(2)"),

43



Chapter 3. Nonlinear models

data.frame(pred_df_all, conc = conc_nlme_3, model = "NLME(3)"))
fig_theoph +

geom_line(data = pred_df_all, aes(Time, conc, color = model))
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Figure 3.6: Estimated concentrations for each individual in the theopylline study from model (3.7; NLM),
model (3.9; NLME(2)) and the model with all effects varying (NLM(3)). The dotted line is the adminis-
tered dose.

3.3 Generalized nonlinear mixed effects models
Nonlinear models can be extended to non-normal responses in the same way as linear models. The
generalized nonlinear mixed effects model (GNLMM) assumes

𝑌𝑖 ∣ 𝑥𝑖, 𝑏𝑖
ind∼ EF(𝜇𝑖, 𝜎2) ,

⎡⎢
⎣

𝑔(𝜇1)
⋮

𝑔(𝜇𝑛)
⎤⎥
⎦

= 𝜂(𝛽 + 𝐴𝑏𝑖, 𝑥𝑖) ,

𝑏𝑖
ind∼ N(0, Σ𝑏) ,

(3.10)

where, again, EF(𝜇𝑖, 𝜎2) is an exponential family distribution with mean 𝜇𝑖 and variance 𝜎2𝑉 (𝜇𝑖)/𝑚𝑖 for
known 𝑚𝑖.

Model (3.10) has as special cases the linear model, the nonlinear model, the linear mixed effects model,
the nonlinear mixed effects model, the generalized linear model, and the generalized nonlinear model.

There are various technical and practical issues related to fitting generalized nonlinear mixed effects
models. For instance:
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• as in GLMMs, the likelihood function is not available in closed form and needs to be approximated;

• oftentimes, general-purpose optimization routines do not converge to a global maximum of the
likelihood;

• evaluating 𝜂(𝛽, 𝑥) can be computationally expensive in some applications, like, for example, when
𝜂(𝛽, 𝑥) is defined via a differential equation, which can only be solved numerically.

These are all areas of current research.
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Latent variables

4.1 Setting
Many statistical models simplify when written in terms of unobserved latent variable 𝑈 in addition to
the observed data 𝑌 . The latent variable

• may really exist: for example, when 𝑌 = 𝐼(𝑈 > 𝑐) for some continuous 𝑈 (“do you earn less than
c per year?”);

• may be human construct: for example, something called IQ is said to underlie scores on intelligence
tests, but is IQ just a cultural construct? (“Mismeasure of man” debate, etc.);

• may just be a mathematical / computational device: for example, latent variables are used in the
implementation of MCMC or EM algorithms.

Some prominent examples include models with random effects, hidden variables in probit regression, and
mixture models.

Example 4.1 (Velocity of galaxies). The galaxies data set of the MASS R packages provides the veloci-
ties, in km/sec, of 82 galaxies, moving away from our own galaxy, from 6 well-separated conic sections of
an ‘unfilled’ survey of the Corona Borealis region. If galaxies are indeed super-clustered the distribution
of their velocities estimated from the red-shift in their light-spectra would be multimodal, and unimodal
otherwise.

Figure 4.1 shows two kernel density estimators with gaussian kernel but different bandwidth selection
procedures. We can think of each observation having a latent, unobserved, variable indicating the super-
cluster the galaxy belongs to. Clearly, depending on what density estimator is used, we may end up with
different inferences.
cols <- hcl.colors(3)
data("galaxies", package = "MASS")
## Fix typo see `?galaxies`
galaxies[78] <- 26960
## Rescale to 1000km/s
galaxies <- galaxies / 1000
plot(x = c(0, 40), y = c(0, 0.25), type = "n", bty = "l",

xlab = "velocity of galaxy (1000km/s)", ylab = "density")
rug(galaxies)
lines(density(galaxies, bw = "nrd0"), col = cols[2])
lines(density(galaxies, bw = "SJ"), col = cols[3])
legend("topleft", legend = c('bw = "nrd0"', 'bw = "SJ"'),

col = cols[2:3], lty = 1)
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Figure 4.1: Density of galaxy velocities in 1000km/s, using two kernel density estimators with gaussian
kernel but different bandwidth selection procedures.

4.2 Latent variable models
Let [𝑈], 𝐷 denote discrete random variables, and (𝑈), 𝑋 continuous ones.

Then in notation for graphical models:

• [𝑈] → 𝑋 or [𝑈] → 𝐷: finite mixture models, hidden Markov models, changepoint models, etc.

• (𝑈) → 𝐷: data coarsening (censoring, truncation, …)

• (𝑈) → 𝑋 or (𝑈) → 𝐷: variance components and other hierarchical models (generalized nonlinear
mixed models, exploratory / confirmatory factor analysis, etc.)

Example 4.2 (Probit regression). For example, a generalized linear model for binary data with a probit
link function can be written as

𝑈𝑖
ind∼ N(𝑥⊤

𝑖 𝛽, 1)
𝑌𝑖 = 𝐼(𝑈𝑖 ≥ 0) .

The log-likelihood of the probit regression model is then
𝑛

∑
𝑖=1

{𝑦𝑖 logΦ(𝑥⊤
𝑖 𝛽) + (1 − 𝑦𝑖) log{1 − Φ(𝑥⊤𝛽)}} .

Different assumptions for the distribution of the latent variable 𝑈 give rise to different models (e.g. lo-
gistic distribution gives rise to logistic regression, extreme-value distribution to complementary log-log
regression, etc.).

4.3 Finite mixture models
Settings like that of Example 4.1 are common in practice; observations are taken from a population com-
posed of distinct sub-populations, but it is unknown from which of those sub-populations the observations
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come from. A natural model for such settings is a finite mixture model. A 𝑝-component finite mixture
model has density or probability mass function

𝑓(𝑦 ; 𝜋, 𝜃) =
𝑝

∑
𝑟=1

𝜋𝑟𝑓𝑟(𝑦 ; 𝜃) (0 ≤ 𝜋𝑟 ≤ 1;
𝑝

∑
𝑟=1

𝜋𝑟 = 1) ,

where 𝜋𝑟 is the probability that 𝑦 is from the 𝑟th component, and 𝑓𝑟(𝑦 ; 𝜃) is its density or probability
mass function conditional on this event (component density).

We can represent the mixture model using indicator variables 𝑈 , taking a value in 1, … , 𝑝 with probabilities
𝜋1, … , 𝜋𝑝, respectively, indicating from which component 𝑌 is drawn.

Mixture models is a widely used class of models for density estimation and clustering. It is often assumed
that the number of components 𝑝 is unknown.

Such models are non-regular for likelihood inference, for the following reasons:

• The ordering of components is non-identifiable. In other works, charging the order of the components
does not change the model.

• Setting 𝜋𝑟 = 0 eliminates the unknown parameters in 𝑓𝑟(𝑦 ; 𝜋, 𝜃)
• Depending on the specification of the component distribution, the maximum of the log-likelihood

can be +∞, and can be achieved for various 𝜃.
Typically, implementations use special constraints on the parameters overcome to the above issues.

4.4 Expectation-Maximization
4.4.1 Derivation of the EM algorithm
Suppose that the aim is to use the observed value 𝑦 of 𝑌 for inference on 𝜃 when we cannot easily compute

𝑓(𝑦 ; 𝜃) = ∫ 𝑓(𝑦 ∣ 𝑢 ; 𝜃)𝑓(𝑢 ; 𝜃)𝑑𝑢 .

Assuming that we have observations on 𝑈 , the Bayes theorem gives that the complete data log-likelihood
is

log 𝑓(𝑦, 𝑢 ; 𝜃) = log 𝑓(𝑦 ; 𝜃) + log 𝑓(𝑢 ∣ 𝑦 ; 𝜃) . (4.1)

On the other hand, the incomplete data log-likelihood (sometimes also called the observable data log-
likelihood) is simply

ℓ(𝜃) = log 𝑓(𝑦 ; 𝜃) .

Taking expectations in both sides of (4.1) with respect to 𝑓(𝑢 ∣ 𝑦 ; 𝜃′) gives

E (log 𝑓(𝑌 , 𝑈 ; 𝜃) ∣ 𝑌 = 𝑦 ; 𝜃′) = ℓ(𝜃) + E (log 𝑓(𝑈 ∣ 𝑌 ; 𝜃) ∣ 𝑌 = 𝑦 ; 𝜃′) , (4.2)

which we write as
𝑄(𝜃 ; 𝜃′) = ℓ(𝜃) + 𝐶(𝜃 ; 𝜃′) .

Let’s fix 𝜃′, and consider how 𝑄(𝜃 ; 𝜃′) and 𝐶(𝜃 ; 𝜃′) depend on 𝜃. Note that, by Jensen’s inequality,
𝐶(𝜃′ ; 𝜃′) ≥ 𝐶(𝜃 ; 𝜃′), with equality only when 𝜃 = 𝜃′. Hence,

𝑄(𝜃 ; 𝜃′) ≥ 𝑄(𝜃′ ; 𝜃′) ⟹ ℓ(𝜃) − ℓ(𝜃′) ≥ 𝐶(𝜃′ ; 𝜃′) − 𝐶(𝜃 ; 𝜃′) ≥ 0 . (4.3)

Under mild smoothness conditions, 𝐶(𝜃 ; 𝜃′) has a stationary point at 𝜃 ∶= 𝜃′, so if 𝑄(𝜃 ; 𝜃′) is stationary
at 𝜃 ∶= 𝜃′, so too is ℓ(𝜃).
Hence, we now formulate the Expectation-Maximization (EM) algorithm for maximizing ℓ(𝜃). Starting
from an initial value 𝜃′ of 𝜃
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1. Compute 𝑄(𝜃 ; 𝜃′) = E (log 𝑓(𝑌 , 𝑈 ; 𝜃) ∣ 𝑌 = 𝑦 ; 𝜃′).
2. With 𝜃′ fixed, maximize 𝑄(𝜃 ; 𝜃′) with respect to 𝜃, and let 𝜃† be the maximizer.

3. Check if the algorithm has converged, based on ℓ(𝜃†) − ℓ(𝜃′) if available, or ‖𝜃† − 𝜃′‖, or both. If
the algorithm has converged stop and return 𝜃† as the value of the maximum likelihood estimator

̂𝜃. Otherwise, set 𝜃′ ∶= 𝜃† and go to 1.

Steps 1 and 2 are the Expectation (E) and maximization (M) steps, respectively.

The M-step ensures that 𝑄(𝜃† ; 𝜃′) ≥ 𝑄(𝜃′ ; 𝜃′), so (4.3) implies that ℓ(𝜃†) ≥ ℓ(𝜃′). The log likelihood
never decreases between EM iterations!

4.4.2 Convergence
If ℓ(𝜃) has only one stationary point, and if 𝑄(𝜃 ; 𝜃′) eventually reaches a stationary value at ̂𝜃, then ̂𝜃
must maximize ℓ(𝜃). Otherwise, the algorithm may converge to a local maximum of the log likelihood or
to a saddlepoint.

Note here, that the EM algorithm never decreases the log likelihood so it is, generally, more stable than
Newton–Raphson-type algorithms. The rate of convergence depends on closeness of 𝑄(𝜃 ; 𝜃′) and ℓ(𝜃).
Similarly to (4.2), we can write

−𝜕2ℓ(𝜃)
𝜕𝜃𝜕𝜃⊤ = E(−𝜕2 log 𝑓(𝑌 , 𝑈 ; 𝜃)

𝜕𝜃𝜕𝜃⊤ ∣ 𝑌 = 𝑦 ; 𝜃) − E(−𝜕2 log 𝑓(𝑈 ∣ 𝑌 ; 𝜃)
𝜕𝜃𝜕𝜃⊤ ∣ 𝑌 = 𝑦 ; 𝜃) ,

or 𝐽(𝜃) = 𝐼𝑐(𝜃 ; 𝑦) − 𝐼𝑚(𝜃 ; 𝑦). The latter expression is often referred to as the missing information
principle: the observed information equals the complete-data information minus the missing information.

The rate of convergence of the EM is slow if the largest eigenvalue of 𝐼𝑐(𝜃 ; 𝑦)−1𝐼𝑚(𝜃 ; 𝑦) ≈ 1. Roughly,
this occurs if the missing information is a high proportion of the total.

Example 4.3 (Negative binomial). For a toy example, suppose that conditional on 𝑈 = 𝑢, 𝑌 is a Poisson
variable with mean 𝑢, and that 𝑈 is gamma with mean 𝜃 and variance 𝜃2/𝜈. Inference is required for 𝜃
with the shape parameter 𝜈 > 0 assumed known. The complete data log-likelihood is

𝑦 log𝑢 − 𝑢 − log 𝑦! + 𝜈 log 𝜈 − 𝜈 log 𝜃 + (𝜈 − 1) log𝑢 − 𝜈𝑢/𝜃 − logΓ(𝜈) ,

and hence (4.2) is

𝑄(𝜃 ; 𝜃′) = (𝑦 + 𝜈 − 1)E(log𝑈 ∣ 𝑌 = 𝑦 ; 𝜃′) − (1 + 𝜈/𝜃)E(𝑈 ∣ 𝑌 = 𝑦 ; 𝜃′) − 𝜈 log 𝜃

plus terms that depend neither on 𝑈 nor on 𝜃.
The E-step, that is the computation of 𝑄(𝜃 ; 𝜃′), involves two expectations, but fortunately E(log𝑈 ∣ 𝑌 =
𝑦 ; 𝜃′) does not appear in terms that involve 𝜃 and so is not required. To compute E(𝑈 ∣ 𝑌 = 𝑦 ; 𝜃′), note
that 𝑌 and 𝑈 have joint density

𝑓(𝑦 ∣ 𝑢)𝑓(𝑢 ; 𝜃) = 𝑢𝑦

𝑦! 𝑒−𝑢 × 𝜈𝜈𝑢𝜈−1

𝜃𝜈Γ(𝜈) 𝑒−𝜈𝑢/𝜃, 𝑦 = 0, 1, … , 𝑢 > 0, 𝜃 > 0 ,

so the marginal density of 𝑌 is

𝑓(𝑦 ; 𝜃) = ∫
∞

0
𝑓(𝑦 ∣ 𝑢)𝑓(𝑢 ; 𝜃, 𝜈)𝑑𝑢 = Γ(𝑦 + 𝜈)𝜈𝜈

Γ(𝜈)𝑦!
𝜃𝑦

(𝜃 + 𝜈)𝑦+𝜈 (𝑦 = 0, 1, …) .

Hence, the conditional density 𝑓(𝑢 ∣ 𝑦 ; 𝜃′) is gamma with shape parameter 𝑦 + 𝜈 and mean E(𝑈 ∣ 𝑌 =
𝑦 ; 𝜃′) = (𝑦 + 𝜈)/(1 + 𝜈/𝜃′). Ignoring terms that do not depend on 𝜃, we can take

𝑄(𝜃 ; 𝜃′) = −(1 + 𝜈/𝜃)(𝑦 + 𝜈)/(1 + 𝜈/𝜃′) − 𝜈 log 𝜃 .
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The M-step involves maximization of 𝑄(𝜃 ; 𝜃′) over 𝜃 for fixed 𝜃′. If we differentiate with respect to 𝜃 we
find that the maximizing value is

𝜃† = 𝜃′(𝑦 + 𝜈)/(𝜃′ + 𝜈) (4.4)
Hence, the EM algorithm boils down to choosing an initial 𝜃′, updating it to 𝜃† using (4.4), setting 𝜃′ = 𝜃†

and iterating to convergence.

4.5 EM for mixture models
Consider the 𝑝-component mixture density 𝑓(𝑦 ; 𝜋, 𝜃) = ∑𝑝

𝑟=1 𝜋𝑟𝑓𝑟(𝑦 ; 𝜃). The contribution to the com-
plete data log-likelihood (assuming that we know from what component 𝑦 is from) has the form

log 𝑓(𝑦, 𝑢 ; 𝜋, 𝜃) =
𝑝

∑
𝑟=1

𝐼(𝑢 = 𝑟) {log𝜋𝑟 + log 𝑓𝑟(𝑦 ; 𝜃)} .

Hence, for the E-step, we must compute the expectation of log 𝑓(𝑦, 𝑢 ; 𝜋, 𝜃) over the conditional distribu-
tion

𝑤𝑟(𝑦 ; 𝜋′, 𝜃′) = 𝑃(𝑈 = 𝑟 ∣ 𝑌 = 𝑦 ; 𝜋′, 𝜃′) = 𝜋′
𝑟𝑓𝑟(𝑦 ; 𝜃′)

∑𝑝
𝑠=1 𝜋′𝑠𝑓𝑠(𝑦 ; 𝜃′) (𝑟 = 1, … , 𝑝) . (4.5)

This probability can be regarded as the weight attributable to component 𝑟 if 𝑦 has been observed.

The expected value of 𝐼(𝑈 = 𝑟) with respect to (4.5) is 𝑤𝑟(𝑦 ; 𝜋′, 𝜃′), so the expected value of the
complete-data log likelihood based on a random sample (𝑦1, 𝑢1), … , (𝑦𝑛, 𝑢𝑛) is

𝑄(𝜋, 𝜃 ; 𝜋′, 𝜃′) =
𝑛

∑
𝑗=1

𝑝
∑
𝑟=1

𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′) {log𝜋𝑟 + log 𝑓𝑟(𝑦𝑗 ; 𝜃)}

=
𝑝

∑
𝑟=1

{
𝑛

∑
𝑗=1

𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′)} log𝜋𝑟 +
𝑝

∑
𝑟=1

𝑛
∑
𝑗=1

𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′) log 𝑓𝑟(𝑦𝑗 ; 𝜃) .

The M-step of the algorithm entails maximizing 𝑄(𝜋, 𝜃 ; 𝜋′, 𝜃′) over 𝜋 and 𝜃 for fixed 𝜋′ and 𝜃′. As 𝜋𝑟
do not usually appear in the component density 𝑓𝑟, the maximizing values 𝜋†

𝑟 are obtained from the first
term of 𝑄, which corresponds to a multinomial log likelihood. Thus

𝜋†
𝑟 = 1

𝑛 ∑
𝑗

𝑤𝑟(𝑦𝑗 ; 𝜃′)

which is the average weight for component 𝑟.
Estimates of the parameters of the component distributions are obtained from the weighted log likelihoods
that form the second term of 𝑄(𝜋, 𝜃 ; 𝜋′, 𝜃′). For example, if 𝑓𝑟 is the normal density with mean 𝜇𝑟 and
variance 𝜎2

𝑟 , simple calculations give the weighted estimates

𝜇†
𝑟 =

∑𝑛
𝑗=1 𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′)𝑦𝑗

∑𝑛
𝑗=1 𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′) , 𝜎2†

𝑟 =
∑𝑛

𝑗=1 𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′)(𝑦𝑗 − 𝜇†
𝑟)2

∑𝑛
𝑗=1 𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′) (𝑟 = 1, … , 𝑝) .

Given initial values for the parameters, the EM algorithm simply involves computing the weights
𝑤𝑟(𝑦𝑗 ; 𝜋′, 𝜃′) at these initial values, updating to obtain 𝜋†, 𝜃†, and checking convergence using the log
likelihood, ‖𝜃† − 𝜃′‖ + ‖𝜋† − 𝜋′‖, or both. If convergence is not yet attained, 𝜋′, 𝜃′ are replaced by 𝜋†, 𝜃†

and the cycle repeated.

Example 4.4 (Velocity of galaxies (revisited)). We now revisit Example 4.1, and fit a mixture model
with normal component densities, where each component has its own mean and variance. This can be
done using the mclust R package, which provides the EM algorithm for gaussian mixture models. The
code chunk below fits all mixture models with 1 up to 10 components, and plots the values of BIC for
the 10 models (note that mclust reports the negative of the BIC as we defined it). The model with 4
components has the best BIC value.
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library("mclust")
gal_mix <- Mclust(galaxies, G = 1:10, modelNames = "V")
plot(gal_mix, what = "BIC")
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Figure 4.2 shows the estimated mixture density.
plot(x = c(0, 40), y = c(0, 0.25), type = "n", bty = "l",

xlab = "velocity of galaxy (1000km/s)", ylab = "density")
rug(galaxies)
lines(density(galaxies, bw = "nrd0"), col = cols[2])
lines(density(galaxies, bw = "SJ"), col = cols[3])
legend("topleft", legend = c('GMM', 'bw = "nrd0"', 'bw = "SJ"'),

col = cols, lty = 1)
ra <- seq(0, 40, length.out = 1000)
lines(ra, dens(ra, modelName = "V", parameters = gal_mix$parameters),

col = cols[1])
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Figure 4.2: Density of galaxy velocities in 1000km/s, using two kernel density estimators with gaussian
kernel but different bandwidth selection procedures, and a mixture of 4 normal densities.

One of the advantages of using the EM to fit mixture models is that the weights (4.5) from the E-step can
be used to determine both at which component is observation has been assigned to and the uncertainty
around that assignment. For example,
par(mfrow = c(1, 2))
plot(gal_mix, what = "classification")
plot(gal_mix, what = "uncertainty")
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4.6 Exponential families
Suppose that the complete-data log likelihood is the logarithm of the density or probability mass function
of an exponential family distribution, that is

log 𝑓(𝑦, 𝑢 ; 𝜃) = 𝑠(𝑦, 𝑢)⊤𝜃 − 𝜅(𝜃) + 𝑐(𝑦, 𝑢) . (4.6)

In order to implement the EM algorithm, we need the expected value of log 𝑓(𝑦, 𝑢 ; 𝜃) with respect to
𝑓(𝑢 ∣ 𝑦 ; 𝜃′). The final term in (4.6) can be ignored. Hence, the M-step involves maximizing

𝑄(𝜃 ; 𝜃′) = E (𝑠(𝑦, 𝑈)⊤𝜃 ∣ 𝑌 = 𝑦 ; 𝜃′) − 𝜅(𝜃) ,

or, equivalently, solving for 𝜃 the equation

E (𝑠(𝑦, 𝑈) ∣ 𝑌 = 𝑦 ; 𝜃′) = 𝜕𝜅(𝜃)
𝜕𝜃 .

The likelihood equation for 𝜃 based on the complete data is 𝑠(𝑦, 𝑢) = 𝜕𝜅(𝜃)/𝜕𝜃. So, the EM algorithm
simply replaces 𝑠(𝑦, 𝑢) by its conditional expectation E (𝑠(𝑦, 𝑈) ∣ 𝑌 = 𝑦 ; 𝜃′) and solves the likelihood
equation. Thus, a routine to fit the complete-data model can readily be adapted for missing data if the
conditional expectations are available.

53



Bibliography

This section provides a curated list of a few landmark papers and books on statistical modelling, covering
topics in the current set of notes, and beyond (extra topics include missing data, EM algorithms, mixture
models, learning under sparsity, causal inference, graphical models). Of course, given the breadth of the
field and the speed at which it it developing, any list like the one below can hardly provide fair coverage,
and will be missing many old and recent core developments. Its purpose it to be a helpful starting point
for engaging more with key ideas and developments in statistical modelling.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.
N. Petrov & F. Czáki (Eds.), Second international symposium on information theory (pp. 267–281).
Akademiai Kiadó. https://doi.org/10.1007/978-1-4612-0919-5_38

Albert, J. H. (2007). Bayesian computation with r. Springer-Verlag. https://doi.org/10.1007/978-0-387-
92298-0

Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal
of the American Statistical Association, 88, 669–679. https://doi.org/10.2307/2290350

Best, N., & Thomas, A. (2000). Bayesian graphical models and software for GLMs. In D. K. Dey, S.
K. Ghosh, & B. K. Mallick (Eds.), Generalized linear models: A Bayesian perspective (pp. 387–406).
Marcel Dekker. https://doi.org/10.1201/9781482293456

Breslow, N. E., & Clayton, D. G. (1993). Appproximate inference in generalised linear mixed models.
Journal of the American Statistical Association, 88, 9–25. https://doi.org/10.2307/2290687

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: A practical
information theoretic approach (Second). Springer. https://doi.org/10.1007/978-1-4757-2917-7

Candès, E., & Tao, T. (2007). The Dantzig selector: Statistical estimation when 𝑝 is much larger than 𝑛
(with discussion). Annals of Statistics, 35, 2313–2404. https://doi.org/10.1214/009053606000001523

Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging. Cambridge University Press.
https://doi.org/10.1017/CBO9780511790485

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhelter, D. J. (1999). Probabilistic networks and
expert systems. Springer-Verlag. https://doi.org/10.1007/b97670

Crowder, M. J., & Hand, D. J. (1990). Analysis of repeated measures. Chapman; Hall/CRC. https:
//doi.org/10.1201/9781315137421

Davison, A. C. (2003). Statistical models. Cambridge University Press. https://doi.org/10.1017/CBO9
780511815850

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm (with discussion). Journal of the Royal Statistical Society Series B, 39, 1–38.
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. (2002). Analysis of longitudinal data (2nd ed.).
Oxford University Press. https://global.oup.com/academic/product/analysis-of-longitudinal-data-
9780199676750

Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the
Royal Statistical Society Series B, 57, 45–97. https://doi.org/10.1111/j.2517-6161.1995.tb02015.x

Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order
efficiency). The Annals of Statistics, 3(6), 1189–1242. https://doi.org/10.1214/aos/1176343282

Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (Eds.). (2013). Regression: Models, methods and applica-
tions. Springer. https://doi.org/10.1007/978-3-642-34333-9

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties.

54

https://doi.org/10.1007/978-1-4612-0919-5_38
https://doi.org/10.1007/978-0-387-92298-0
https://doi.org/10.1007/978-0-387-92298-0
https://doi.org/10.2307/2290350
https://doi.org/10.1201/9781482293456
https://doi.org/10.2307/2290687
https://doi.org/10.1007/978-1-4757-2917-7
https://doi.org/10.1214/009053606000001523
https://doi.org/10.1017/CBO9780511790485
https://doi.org/10.1007/b97670
https://doi.org/10.1201/9781315137421
https://doi.org/10.1201/9781315137421
https://doi.org/10.1017/CBO9780511815850
https://doi.org/10.1017/CBO9780511815850
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://global.oup.com/academic/product/analysis-of-longitudinal-data-9780199676750
https://global.oup.com/academic/product/analysis-of-longitudinal-data-9780199676750
https://doi.org/10.1111/j.2517-6161.1995.tb02015.x
https://doi.org/10.1214/aos/1176343282
https://doi.org/10.1007/978-3-642-34333-9


Bibliography

Journal of the American Statistical Association, 96, 1348–1360.
Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space (with

Discussion). Journal of the Royal Statistical Society Series B, 70, 849–911. https://doi.org/10.1198/
016214501753382273

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2004). Bayesian
data analysis (3rd ed.). Chapman; Hall/CRC. https://doi.org/10.1201/b16018

Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and other stories. Cambridge University Press.
https://doi.org/10.1017/9781139161879

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996). Markov chain monte carlo in practice.
Chapman & Hall.

Green, P. J., Hjørt, N. L., & Richardson, S. (Eds.). (2003). Highly structured stochastic systems. Chap-
man & Hall/CRC. 10.1201/b14835

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The Lasso and
generalizations. Chapman; Hall/CRC. https://doi.org/10.1201/b18401

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A
tutorial (with discussion). Statistical Science, 14, 382–417. https://doi.org/10.1214/ss/1009212519

Jamshidian, M., & Jennrich, R. I. (1997). Acceleration of the EM algorithm by using quasi-Newton
methods. Journal of the Royal Statistical Society Series B, 59, 569–587. https://doi.org/10.1111/1467-
9868.00083

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90,
773–795. https://doi.org/10.1080/01621459.1995.10476572

Liang, K., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika,
73(1), 13–22. https://doi.org/10.1093/biomet/73.1.13

Linhart, H., & Zucchini, W. (1986). Model selection. Wiley. https://doi.org/10.1007/978-3-642-04898-
2_373

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.). Wiley. https:
//doi.org/10.1002/9781119013563

Marin, J.-M., & Robert, C. P. (2007). Bayesian core: A practical approach to computational bayesian
statistics. Springer-Verlag. https://doi.org/10.1007/978-0-387-38983-7

McCullagh, P. (2002). What is a statistical model? The Annals of Statistics, 30(5), 1225–1310. https:
//doi.org/10.1214/aos/1035844977

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Chapman & Hall. https:
//doi.org/10.1201/9780203753736

McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, linear, and mixed models (2nd
ed.). Wiley. https://doi.org/10.1002/0471722073

McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions (2nd ed.). Wiley. https:
//doi.org/10.1002/9780470191613

McQuarrie, A. D. R., & Tsai, C.-L. (1998). Regression and time series model selection. World Scientific.
https://doi.org/10.1142/3573

Meng, X.-L., & van Dyk, D. (1997). The EM algorithm — an old folk-song sung to a fast new tune (with
discussion). Journal of the Royal Statistical Society Series B, 59, 511–567. https://doi.org/10.1111/
1467-9868.00082

Nelder, J. A., Lee, Y., & Pawitan, Y. (2017). Generalized linear models with random effects: A unified
approach via ℎ-likelihood (2nd ed.). Chapman; Hall/CRC. https://doi.org/10.1201/9781315119953

Nelder, J. A., &Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical
Society: Series A (General), 135(3), 370–384. https://doi.org/10.2307/2344614

O’Hagan, A., & Forster, J. J. (2004). Kendall’s advanced theory of statistics. Volume 2B: Bayesian
inference (Second). Hodder Arnold. https://www.wiley.com/en-us/Kendall%27s+Advanced+Theo
ry+of+Statistic+2B-p-9780470685693

Oakes, D. (1999). Direct calculation of the information matrix via the EM algorithm. Journal of the
Royal Statistical Society Series B, 61, 479–482. https://doi.org/10.1111/1467-9868.00188

Ogden, H. (2021). On the error in laplace approximations of high-dimensional integrals. Stat, 10(1),
e380. https://doi.org/10.1002/sta4.380

Ogden, H. E. (2017). On asymptotic validity of naive inference with an approximate likelihood.
Biometrika, 104(1), 153–164. https://doi.org/10.1093/biomet/asx002

Peters, J., Janzing, D., & Schlkopf, B. (2017). Elements of causal inference: Foundations and learning

55

https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1201/b16018
https://doi.org/10.1017/9781139161879
https://10.1201/b14835
https://doi.org/10.1201/b18401
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1111/1467-9868.00083
https://doi.org/10.1111/1467-9868.00083
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1093/biomet/73.1.13
https://doi.org/10.1007/978-3-642-04898-2_373
https://doi.org/10.1007/978-3-642-04898-2_373
https://doi.org/10.1002/9781119013563
https://doi.org/10.1002/9781119013563
https://doi.org/10.1007/978-0-387-38983-7
https://doi.org/10.1214/aos/1035844977
https://doi.org/10.1214/aos/1035844977
https://doi.org/10.1201/9780203753736
https://doi.org/10.1201/9780203753736
https://doi.org/10.1002/0471722073
https://doi.org/10.1002/9780470191613
https://doi.org/10.1002/9780470191613
https://doi.org/10.1142/3573
https://doi.org/10.1111/1467-9868.00082
https://doi.org/10.1111/1467-9868.00082
https://doi.org/10.1201/9781315119953
https://doi.org/10.2307/2344614
https://www.wiley.com/en-us/Kendall%27s+Advanced+Theory+of+Statistic+2B-p-9780470685693
https://www.wiley.com/en-us/Kendall%27s+Advanced+Theory+of+Statistic+2B-p-9780470685693
https://doi.org/10.1111/1467-9868.00188
https://doi.org/10.1002/sta4.380
https://doi.org/10.1093/biomet/asx002


Bibliography

algorithms. The MIT Press. https://mitpress.mit.edu/books/elements-causal-inference
Pinheiro, J., & Bates, D. M. (2002). Mixed effects models in S and S-PLUS. New York:Springer-Verlag.

https://doi.org/10.1007/b98882
Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian model averaging for linear regression

models. Journal of the American Statistical Association, 92, 179–191. https://doi.org/10.1080/0162
1459.1997.10473615

Richardson, S., & Green, P. J. (1997). On bayesian analysis of mixtures with an unknown number
of components (with discussion). Journal of the Royal Statistical Society Series B, 59, 731–792.
https://doi.org/10.1111/1467-9868.00095

Rissanen, J. (1987). Stochastic complexity (with discussion). Journal of the Royal Statistical Society,
Series B, 49, 223–239. https://doi.org/10.1111/j.2517-6161.1987.tb01694.x

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. https:
//doi.org/10.1214/aos/1176344136

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. van der. (2002). Bayesian measures of model
complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583–639.
https://doi.org/10.1111/1467-9868.00353

Tanner, M. A. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions
and likelihood functions (Third). Springer. https://doi.org/10.1007/978-1-4612-4024-2

Venables, W., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer-Verlag.
https://doi.org/10.1007/978-0-387-21706-2

Wedderburn, R. W. M. (1974). Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-
Newton Method. Biometrika, 61(3), 439. https://doi.org/10.2307/2334725

Wood, S. N. (2017). Generalized additive models: An introduction with r (2nd ed.). Chapman; Hall/CRC.
https://doi.org/10.1201/9781315370279

56

https://mitpress.mit.edu/books/elements-causal-inference
https://doi.org/10.1007/b98882
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.1111/1467-9868.00095
https://doi.org/10.1111/j.2517-6161.1987.tb01694.x
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1007/978-1-4612-4024-2
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.2307/2334725
https://doi.org/10.1201/9781315370279


Chapter 5

Lab 1 (with solution)

5.1 Exercise
Suppose

𝑌𝑖𝑚
ind∼ Poisson (𝜇∗(𝑥𝑖𝑚)) (𝑖 = 1, … , 𝑛; 𝑚 = 1, … , 𝑀) ,

where
𝜇∗(𝑥𝑖𝑚) = 8 exp (𝑤(𝑥𝑖𝑚)) ,

𝑥𝑖𝑚 = 𝑥𝑖 = −10 + 20 𝑖 − 1
𝑛 − 1 ,

𝑤(𝑥) = 0.001 (100 + 𝑥 + 𝑥2 + 𝑥3) .

Consider the following simulation study. For 𝑏 = 1, … , 𝐵:

• Generate
𝑌𝑖𝑚

ind∼ Poisson(𝜇(𝑥𝑖𝑚)) (𝑖 = 1, … , 𝑛; 𝑚 = 1, … , 𝑀)

• Compute the AIC and BIC of the candidate models

𝑌𝑖𝑚
ind∼ Poisson(𝜇(𝑥𝑖𝑚)), 𝜇(𝑥𝑖𝑚) = exp(

𝑝
∑
𝑗=1

𝛽𝑗𝑥𝑗−1
𝑖𝑚 ) ,

for 𝑝 = 1, … , 𝑝max.

You can carry out the simulation study for 𝑛 = 200, 𝑀 = 3, 𝑝max = 20, and 𝐵 = 100 with the following
code:
B <- 100
n <- 200
M <- 3
pmax <- 20

w <- function(x) {
0.001 * (100 + x + x^2 + x^3)

}

mu <- function(x) {
8 * exp(w(x))

}

## Covariates
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x <- rep(seq(from = -10, to = 10, length = n), each = M)

## Objects to hold AICs and BICs
aics <- bics <- matrix(NA, nrow = B, ncol = pmax)

set.seed(20240416)
for (b in 1:B) {

## Simulate responses
y <- rpois(n = M * n, lambda = mu(x))
## Fit intercept-only model and compute AIC, BIC
mod <- glm(y ~ 1, family = poisson)
aics[b, 1] <- AIC(mod)
bics[b, 1] <- BIC(mod)
## Fit remaining models and compute AIC, BIC
for(p in 2:pmax) {

modp <- glm(y ~ poly(x, p - 1), family = poisson)
aics[b, p] <- AIC(modp)
bics[b, p] <- BIC(modp)

}
}

The number of times each 𝑝 has been selected by AIC and BIC is
AICorder <- apply(aics, 1, which.min)
BICorder <- apply(bics, 1, which.min)
table(AICorder)

AICorder
4 5 6 7 8 9 10 13

78 10 3 5 1 1 1 1
table(BICorder)

BICorder
4 5

98 2

The AIC and BIC values for each sample as a function of 𝑝 are
par(mfrow = c(1, 2))
matplot(x = 1:pmax, t(aics), xlab = "p", ylab = "AIC", type = "l", lty = 1, col = gray(0.9))
matplot(x = 1:pmax, t(bics), xlab = "p", ylab = "BIC", type = "l", lty = 1, col = gray(0.9))
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1. Modify the code above to investigate the performance of AIC and BIC as model selection criteria
for 𝑛 ∈ {25, 50, 100, 1000}.
[Suggestion: write a function that carries out the simulation for user-supplied 𝑛, 𝑀 , 𝑝max, 𝐵, and
the function 𝑤(⋅).]

2. Use
𝑤(𝑥) = 1.2

1 + exp(−𝑥) ,

in the model we simulate from. How do AIC and BIC perform when the candidate models do not
include the simulation model?

3. What information criterion would you use to estimate Δ in (1.2) and why? Use the simulation
results to obtain a simulation-based estimate of Δ as a function of 𝑝, for 𝑛 ∈ {25, 50, 100, 1000},
and each choice of 𝑤(⋅).
Then, estimate Δ directly by its definition using out-of-sample log-likelihood.

[Hint: for the out-of-sample log-likelihood you can do sum(dpois(y_plus, mu_hat, log = TRUE)),
where mu_hat are the fitted means from a training sample and y_plus is an independent sample of
the same size and at exactly the same 𝑥 values as the training sample.]

5.2 Solution
Since we are planning to explore various experimental conditions for the simulation study, it is a good
idea to write a general function that allows us to vary 𝑛, 𝑀 , 𝑝max, 𝐵, and the function 𝑤(.).
run_simulation <- function(n, M = 3, pmax = 20, B = 100,

w = function(x) 0.001 * (100 + x + x^2 + x^3)) {
mu <- function(x) {

8 * exp(w(x))
}
x <- rep(seq(from = -10, to = 10, length = n), each = M)
## Objects to hold AICs and BICs
aics <- bics <- matrix(NA, nrow = B, ncol = pmax)
for (b in 1:B) {

## Simulate responses
y <- rpois(n = M * n, lambda = mu(x))
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## Fit intercept-only model and compute AIC, BIC
mod <- glm(y ~ 1, family = poisson)
aics[b, 1] <- AIC(mod)
bics[b, 1] <- BIC(mod)
## Fit remaining models and compute AIC, BIC
for(p in 2:pmax) {

modp <- glm(y ~ poly(x, p - 1), family = poisson)
aics[b, p] <- AIC(modp)
bics[b, p] <- BIC(modp)

}
}
list(AIC = aics, BIC = bics)

}

We can also write functions that take as input the output of run_simulation() and summarize the
results, as is done in the code provided.
## Returns the number of times each $p$ has been selected by the
## criterion used to compute ics
get_selection_counts <- function(ics) {

ic_order <- apply(ics, 1, which.min)
table(ic_order)

}
## Plots the information criterion values in ics for each sample as a
## function of $p$ are
plot_ic <- function(ics, ylab = "IC", main = NULL) {

matplot(x = 1:pmax, t(ics), xlab = "p", ylab = ylab, main = main, type = "l", lty = 1, col = gray(0.9))
}

So, for the simulation study with for 𝑛 = 200, 𝑀 = 3, 𝑝max = 20, and 𝐵 = 100, we can now simply do
(using the same seed)
set.seed(20240416)

res <- run_simulation(n = 200, M = 3, pmax = 20, B = 100, w = function(x) 0.001 * (100 + x + x^2 + x^3))

Then, for example, the results for AIC are
get_selection_counts(res$AIC)

ic_order
4 5 6 7 8 9 10 13

78 10 3 5 1 1 1 1
plot_ic(res$AIC, ylab = "AIC")

60



Chapter 5. Lab 1 (with solution)

5 10 15 20

30
00

34
00

38
00

42
00

p

A
IC

1.

The code chunk below will run the required simulations and store the results in the list res_true.
set.seed(1)

ns <- c(25, 50, 100, 1000)
res_true <- as.list(numeric(length(ns)))
for (j in 1:length(ns)) {

res_true[[j]] <- run_simulation(n = ns[j], M = 3, pmax = 20, B = 100,
w = function(x) 0.001 * (100 + x + x^2 + x^3))

}
names(res_true) <- paste("n =", ns)

Let’s investigate the behaviour of AIC.
sapply(res_true, function(x) get_selection_counts(x$AIC))

$`n = 25`
ic_order
4 5 6 7 8 9 10 18

67 11 11 2 5 1 1 2

$`n = 50`
ic_order
4 5 6 7 8 9 11 13

70 7 10 5 3 1 3 1

$`n = 100`
ic_order
4 5 6 7 8 9 18

72 11 8 5 2 1 1

$`n = 1000`
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ic_order
4 5 6 7 8 9 10 11

69 11 10 4 2 2 1 1

AIC behaves similarly for all 𝑛. In all cases, the correct (cubic) model is preferred most of the time, but
the probability of it being selected does not tend to one as 𝑛 grows. This is also apparent in the the AIC
vs 𝑝 plots
par(mfrow = c(2, 2))
for (j in 1:length(ns)) {

plot_ic(res_true[[j]]$AIC, ylab = "AIC", main = paste("n =", ns[j]))
abline(v = 4, lty = 3)

}
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Let’s explore the behaviour of BIC.
sapply(res_true, function(x) get_selection_counts(x$BIC))

$`n = 25`
ic_order
2 3 4 5 6
1 1 93 4 1

$`n = 50`
ic_order
4 5

99 1

$`n = 100`
ic_order
4 5
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97 3

$`n = 1000`
ic_order
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In this example, the set of candidate models includes the model we simulate from, and BIC selects the
correct model more and more often as 𝑛 increases. This is also apparent in the BIC vs 𝑝 plots.
par(mfrow = c(2, 2))
for (j in 1:length(ns)) {

plot_ic(res_true[[j]]$BIC, ylab = "BIC", main = paste("n =", ns[j]))
abline(v = 4, lty = 3)

}
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2. The code chunk below will run the required simulations and store the results in the list res_other.
set.seed(1)

ns <- c(25, 50, 100, 1000)
res_other <- as.list(numeric(length(ns)))
for (j in 1:length(ns)) {

res_other[[j]] <- run_simulation(n = ns[j], M = 3, pmax = 20, B = 100,
w = function(x) 1.2 / (1 + exp( - x)))

}
names(res_other) <- paste("n =", ns)

Let’s investigate the behaviour of AIC.
sapply(res_other, function(x) get_selection_counts(x$AIC))
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$`n = 25`
ic_order
4 5 6 7 8 9 10 11 12 13 14 15 16 20
9 2 33 8 19 5 7 3 4 2 2 4 1 1

$`n = 50`
ic_order
4 6 7 8 9 10 11 12 13 14 15 16 17 18 20
1 31 5 22 10 8 5 4 1 3 3 3 1 2 1

$`n = 100`
ic_order
6 7 8 9 10 11 12 13 16 17 18

15 3 33 10 28 2 3 1 1 2 2

$`n = 1000`
ic_order
10 11 12 13 14 15 16 17 18 20
13 5 33 6 21 5 8 1 7 1

As 𝑛 increases, AIC tends to select increasingly complex models, which provide a better approximation
to the true distribution which generated the data, which is not a polynomial model.

On the other hand, BIC prefers simpler models to AIC, although it still tends to prefer more complex
models as 𝑛 increases in this case.
sapply(res_other, function(x) get_selection_counts(x$BIC))

$`n = 25`
ic_order
4 5 6 7 8 10 13

41 4 43 5 5 1 1

$`n = 50`
ic_order
4 5 6 7 8 9 10

18 2 59 9 10 1 1

$`n = 100`
ic_order
6 7 8 10

55 6 35 4

$`n = 1000`
ic_order
8 10 11 12 13

13 76 3 7 1

3. We have shown that

̄ℓ( ̂𝜃) − 𝑝/(𝑛𝑀) = − 1
2𝑛𝑀 {2(𝑝 − ℓ( ̂𝜃))} = − 1

2𝑛𝑀 𝐴𝐼𝐶

is a bias-corrected estimator of Δ.

So,
Δ̃ = − 1

2𝑛𝑀 E(𝐴𝐼𝐶) ,

should be approaching Δ as 𝑛 increases. We can estimate Δ̃ empirically by transforming the AIC values
we obtained in the simulations, and taking averages for every 𝑝.
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A direct, simulation-based estimator of Δ can be obtained by its definition, using independent samples
from the ones that are used for estimation. The code chunk below provides a function that returns a
simulation-base estimator of Δ as a function of 𝑝.
estimate_Delta <- function(n, M = 3, pmax = 20, B = 100,

w = function(x) 0.001 * (100 + x + x^2 + x^3)) {
mu <- function(x) {

8 * exp(w(x))
}
x <- rep(seq(from = -10, to = 10, length = n), each = M)
## Object to hold out-of-sample log-likelihood
oo_ll <- matrix(NA, nrow = B, ncol = pmax)
for (b in 1:B) {

## Simulate responses
y <- rpois(n = M * n, lambda = mu(x))
y_plus <- rpois(n = M * n, lambda = mu(x))
## Fit intercept-only model and compute out-of-sample log-likelihood
mod <- glm(y ~ 1, family = poisson)
oo_ll[b, 1] <- sum(dpois(y_plus, fitted(mod), log = TRUE))
## Fit remaining models and compute out-of-sample log-likelihood
for(p in 2:pmax) {

modp <- glm(y ~ poly(x, p - 1), family = poisson)
oo_ll[b, p] <- sum(dpois(y_plus, fitted(modp), log = TRUE))

}
}
colMeans(oo_ll / (n * M))

}

The estimates of Δ for 𝑤(𝑥) = 0.001 (100 + 𝑥 + 𝑥2 + 𝑥3) and 𝑤(𝑥) = 1.2/{1 + exp(−𝑥)} are
set.seed(1)

ns <- c(25, 50, 100, 1000)
Delta_true <- Delta_other <- as.list(numeric(length(ns)))
for (j in 1:length(ns)) {

Delta_true[[j]] <- estimate_Delta(n = ns[j], M = 3, pmax = 20, B = 100,
w = function(x) 0.001 * (100 + x + x^2 + x^3))

Delta_other[[j]] <- estimate_Delta(n = ns[j], M = 3, pmax = 20, B = 100,
w = function(x) 1.2 / (1 + exp( - x)))

}
names(Delta_true) <- names(Delta_other) <- paste("n =", ns)

For 𝑤(𝑥) = 0.001 (100 + 𝑥 + 𝑥2 + 𝑥3), we get
cols <- hcl.colors(2)
par(mfrow = c(2, 2))
for (j in 1:length(ns)) {

Delta_t <- - res_true[[j]]$AIC / (2 * ns[j] * M)
plot_ic(Delta_t, ylab = "-AIC / (2nM)", main = paste("n =", ns[j]))
lines(1:pmax, colMeans(Delta_t), col = cols[1])
lines(1:pmax, Delta_true[[j]], col = cols[2])

}
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and for 𝑤(𝑥) = 1.2/{1 + exp(−𝑥)}, we get
par(mfrow = c(2, 2))
for (j in 1:length(ns)) {

Delta_t <- - res_other[[j]]$AIC / (2 * ns[j] * M)
plot_ic(Delta_t, ylab = "-AIC / (2nM)", main = paste("n =", ns[j]))
lines(1:pmax, colMeans(Delta_t), col = cols[1])
lines(1:pmax, Delta_other[[j]], col = cols[2])

}

66



Chapter 5. Lab 1 (with solution)

5 10 15 20

−
5.

5
−

4.
0

n = 25

p

−
A

IC
 / 

(2
nM

)

5 10 15 20

−
5.

5
−

4.
0

n = 50

p

−
A

IC
 / 

(2
nM

)

5 10 15 20

−
5.

0
−

3.
5

n = 100

p

−
A

IC
 / 

(2
nM

)

5 10 15 20

−
5.

0
−

4.
0

−
3.

0

n = 1000

p

−
A

IC
 / 

(2
nM

)

The purple piecewise linear functions are the simulation-based estimates of Δ based on AIC, and the
yellow piecewise linear functions are the simulation-based estimates of Δ based on its definition. In the
current setting, we can see that the two simulation-based estimates are almost identical in value.

The fact that BIC does not estimate Δ can now be made directly apparent. For example, for 𝑤(𝑥) =
1.2/{1 + exp(−𝑥)},
par(mfrow = c(2, 2))
for (j in 1:length(ns)) {

plot_ic(- res_other[[j]]$BIC / (2 * ns[j] * M), ylab = "-BIC / (2nM)", main = paste("n =", ns[j]))
lines(1:pmax, Delta_other[[j]], col = cols[1])
abline(v = 4, lty = 3)

}
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Lab 2 (with solution)

6.1 Exercise
The data in hip.txt are from Crowder & Hand (1990), and we can put them in an R data.frame by
hip_url <- url("https://ikosmidis.com/files/APTS-SM-Notes/resources/hip.txt")
hip <- read.table(hip_url,

col.names = c("y", "age", "sex", "subj", "time"),
colClasses = c(rep("numeric", 4), "factor"))

str(hip)

'data.frame': 88 obs. of 5 variables:
$ y : num 47.1 31.1 32.8 44.1 31.5 ...
$ age : num 66 66 66 70 70 70 44 44 44 70 ...
$ sex : num 0 0 0 0 0 0 0 0 0 0 ...
$ subj: num 1 1 1 2 2 2 3 3 3 4 ...
$ time: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...

The variable y contains measurements of haematocrit on 30 patients (subj) on up to three occasions
(time), one before a hip-replacement operation (coded as 1), and two afterwards (coded as 2 and 3).
time is treated here as a categorical variable. The age and sex (0 for male, 1 for female) of the patients
are also recorded.

The primary interest in this study is in possible differences in the evolution of haematocrit between males
and females and whether there is an age effect.

1. For each value of sex, plot the time profiles of the response variable for each subject.

Do you think you think it is necessary to include a random intercept for the subject? What about
a random slope for time?

2. We will analyse these data using linear mixed models (LMMs) of the form

𝑌𝑖𝑗 ∣ 𝑥𝑖𝑗, 𝑧𝑖𝑗
ind∼ N(𝜇𝑖𝑗, 𝜎2) ,

𝜇𝑖𝑗 = 𝑥⊤
𝑖𝑗𝛽 + 𝑧⊤

𝑖𝑗𝑏𝑖 ,
𝑏𝑖

ind∼ N(0, Σ∗
𝑏) ,

(6.1)

where 𝑌𝑖𝑗 is the random variable corresponding to the haematocrit measurement for subject 𝑖 at
time 𝑗, and 𝑥𝑖𝑗 and 𝑧𝑖𝑗 are fixed-effects and mixed-effects covariates, respectively.

Consider building a set of candidate LMMs for explaining haematocrit, using the fixed-effects of
age, sex and time (and possibly interactions of sex to age and time) and random-effects of subj
and time. If you want to have models with interaction effects in your candidate set, make sure that
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you respect the “marginality constraints”, that is the model should have main effects for all terms
from which interactions are formed.

What is your chosen model?

3. For the model you chose, plot the predicted haematocrit for each patient against time.

Use your chosen model to predict the full haematocrit profiles of any patients that do not have
haematocrit measurements at all three time points.

Hints for plotting

For plotting, you may adapt the code used for producing Figure 2.2 for the rat growth data, or you may
use the ggplot2 R package.

Hints for modelling

LMMs for clustered data can be fitted in R using the lmer() function from the lme4 package. For
example,
library(lme4)
hip_lmm1 <- lmer(y ~ age + sex + time + (1 | subj), data = hip)

fits the model with 𝑥𝑖𝑗 = (1, age𝑖, sex𝑖, 𝐼(time𝑖𝑗 = 2), 𝐼(time𝑖𝑗 = 3))⊤, and 𝑧𝑖𝑗 = 1.
The default estimation method in lmer() is REML. If you want to obtain maximum likelihood estimates
(for example, for use in model comparison), they can be obtained using the additional argument REML =
FALSE.

You might find useful some of the following methods for the object that lmer() returns: summary,
fitted, residuals, fixef (fixed effects estimates), ranef (random effects estimates), VarCorr (variance
estimates) coef (coefficient estimates at cluster level, incorporating fixed and random effects), AIC, BIC
and predict.

For more information, see ?lmer.

Quantities in the general LMM definiton in (2.5)

In terms of the general definition of LMMs in (2.5), in order to get a better understanding of what the
formula interface of lmer() does, for hip_lmm1, 𝑌 is
mf1 <- model.frame(hip_lmm1)
model.response(mf1)

1 2 3 4 5 6 7 8 9 10 11 12 13
47.10 31.05 32.80 44.10 31.50 37.00 39.70 33.70 24.50 43.30 18.35 36.60 37.40

14 15 16 17 18 19 20 21 22 23 24 25 26
32.25 29.05 45.70 35.50 39.80 44.90 34.10 32.05 42.90 32.05 46.05 28.80 37.80

27 28 29 30 31 32 33 34 35 36 37 38 39
42.10 34.40 36.05 38.25 29.40 30.50 43.00 33.70 36.65 37.80 26.60 30.60 37.25

40 41 42 43 44 45 46 47 48 49 50 51 52
26.50 38.45 27.95 33.95 27.00 32.50 31.95 38.35 32.30 37.90 38.80 32.55 26.85

53 54 55 56 57 58 59 60 61 62 63 64 65
44.65 32.25 34.20 38.00 27.10 37.85 34.00 23.20 25.95 44.80 37.20 29.70 45.95

66 67 68 69 70 71 72 73 74 75 76 77 78
29.10 26.70 41.85 31.95 37.60 38.00 31.65 35.70 42.20 34.00 33.25 39.70 33.45

79 80 81 82 83 84 85 86 87 88
32.65 37.50 28.20 30.30 34.55 30.95 28.75 35.50 24.70 29.75

𝑋 is
model.matrix(hip_lmm1, type = "fixed")

(Intercept) age sex time2 time3
1 1 66 0 0 0
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2 1 66 0 1 0
3 1 66 0 0 1
4 1 70 0 0 0
5 1 70 0 1 0
6 1 70 0 0 1
7 1 44 0 0 0
8 1 44 0 1 0
9 1 44 0 0 1
10 1 70 0 0 0
11 1 70 0 1 0
12 1 70 0 0 1
13 1 74 0 0 0
14 1 74 0 1 0
15 1 74 0 0 1
16 1 65 0 0 0
17 1 65 0 1 0
18 1 65 0 0 1
19 1 54 0 0 0
20 1 54 0 1 0
21 1 54 0 0 1
22 1 63 0 0 0
23 1 63 0 1 0
24 1 71 0 0 0
25 1 71 0 1 0
26 1 71 0 0 1
27 1 68 0 0 0
28 1 68 0 1 0
29 1 68 0 0 1
30 1 69 0 0 0
31 1 69 0 1 0
32 1 69 0 0 1
33 1 64 0 0 0
34 1 64 0 1 0
35 1 64 0 0 1
36 1 70 0 0 0
37 1 70 0 1 0
38 1 70 0 0 1
39 1 60 1 0 0
40 1 60 1 1 0
41 1 60 1 0 1
42 1 52 1 1 0
43 1 52 1 0 1
44 1 52 1 0 0
45 1 52 1 1 0
46 1 52 1 0 1
47 1 75 1 0 0
48 1 75 1 1 0
49 1 75 1 0 1
50 1 72 1 0 0
51 1 72 1 1 0
52 1 72 1 0 1
53 1 54 1 0 0
54 1 54 1 1 0
55 1 54 1 0 1
56 1 71 1 0 0
57 1 71 1 1 0
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58 1 71 1 0 1
59 1 58 1 0 0
60 1 58 1 1 0
61 1 58 1 0 1
62 1 77 1 0 0
63 1 77 1 1 0
64 1 77 1 0 1
65 1 66 1 0 0
66 1 66 1 1 0
67 1 66 1 0 1
68 1 53 1 0 0
69 1 53 1 1 0
70 1 53 1 0 1
71 1 74 1 0 0
72 1 74 1 1 0
73 1 74 1 0 1
74 1 78 1 0 0
75 1 78 1 1 0
76 1 78 1 0 1
77 1 74 1 0 0
78 1 74 1 1 0
79 1 74 1 0 1
80 1 79 1 0 0
81 1 79 1 1 0
82 1 79 1 0 1
83 1 71 1 0 0
84 1 71 1 1 0
85 1 71 1 0 1
86 1 68 1 0 0
87 1 68 1 1 0
88 1 68 1 0 1
attr(,"assign")
[1] 0 1 2 3 3
attr(,"contrasts")
attr(,"contrasts")$time
[1] "contr.treatment"

attr(,"msgScaleX")
character(0)

and 𝑍 is
model.matrix(hip_lmm1, type = "random")

88 x 30 sparse Matrix of class "dgCMatrix"

[[ suppressing 30 column names '1', '2', '3' ... ]]

1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
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10 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . .
11 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . .
12 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . .
13 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .
14 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .
15 . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .
16 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . .
17 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . .
18 . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . .
19 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . .
20 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . .
21 . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . .
22 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . .
23 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . .
24 . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . .
25 . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . .
26 . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . .
27 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . .
28 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . .
29 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . .
30 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .
31 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .
32 . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .
33 . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .
34 . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .
35 . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .
36 . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . .
37 . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . .
38 . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . .
39 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . .
40 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . .
41 . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . .
42 . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . .
43 . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . .
44 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
45 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
46 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .
47 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . .
48 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . .
49 . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . .
50 . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . .
51 . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . .
52 . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . .
53 . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . .
54 . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . .
55 . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . .
56 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .
57 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .
58 . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .
59 . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . .
60 . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . .
61 . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . .
62 . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .
63 . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .
64 . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . .
65 . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . .
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66 . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . .
67 . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . .
68 . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .
69 . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .
70 . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . .
71 . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . .
72 . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . .
73 . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . .
74 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
75 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
76 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . .
77 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . .
78 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . .
79 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . .
80 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . .
81 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . .
82 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . .
83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

6.2 Solution
1.

library("ggplot2")
hip_pl <- ggplot(hip) +

geom_line(aes(time, y, group = subj), col = "grey") +
geom_point(aes(time, y), fill = "#ff7518", pch = 21, col = "grey") +
facet_grid(~ sex, labeller = label_both) +
labs(y = "haematocrit", x = "Time") +
theme_bw() +
labs(title = "Haematocrit")

hip_pl
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There appears to be heterogeneity between patients for both males and females. We observe no profound
differences in profiles between males and females, perhaps apart from males having slightly elevated
haematocrit levels. Also, with a few exceptions, the profiles appear to be roughly parallel across patients,
or, equivalently, there appears to be no substantial heterogeneity in time.

2.

Let’s fit all possible nested models of the model that includes an interaction of sex with age and time
for the fixed effects, and random effects for patient, time or both patient and time, and compute the AIC
and BIC for each model. In doing so, we need to respect marginality constraints. In other words, the
list of candidate models should include all possible models with main effects (2^3 = 8 in that case), and
from the models with interactions we should include only those that include their respective main effects.
We can easily list the resulting set of candidate models for the fixed-effects in that case:

Main effects only Interactions and respective main effects
y ~ 1
y ~ age
y ~ sex
y ~ time
y ~ age + sex y ~ age + sex + age:sex
y ~ age + time
y ~ sex + time y ~ sex + time + sex:time
y ~ age + sex + time y ~ age + sex + time + age:time

y ~ age + sex + time + sex:time
y ~ age + sex + time + sex:time + age:time

We can now include the above model formulas in R in a list, after adding a random intercept for patient,
and use a for loop to fit all models using lmer() with REML = FALSE, and compute AIC, BIC and AICc
for each model.
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Instead, we can simply fit the model with all interactions with REML = FALSE, and use the dredge()
function of the MuMIn R package to compute information criteria for all other models, as we did in Exam-
ple 1.2 with linear models for the nodal involvement data. dredge() is convenient because marginality
constraints are respected; see ?dredge.

The code chunk below does that for AIC, BIC, and AICc.
library("MuMIn")
hip_full_subj <- lmer(y ~ sex * (age + time) + (1 | subj), data = hip,

REML = FALSE,
na.action = "na.fail")

ms <- dredge(hip_full_subj, rank = "AIC", extra = c("AIC", "AICc", "BIC"))
ms

Global model call: lmer(formula = y ~ sex * (age + time) + (1 | subj), data = hip,
REML = FALSE, na.action = "na.fail")

---
Model selection table

(Int) age sex tim age:sex sex:tim AIC AICc BIC df logLik
7 41.38 -1.860 + 507.1 508.2 522.0 6 -247.574
23 42.48 -3.861 + + 507.9 509.7 527.7 8 -245.952
5 40.35 + 508.4 509.2 520.8 5 -249.212
8 39.08 0.0351800 -1.918 + 508.8 510.2 526.1 7 -247.380
24 40.04 0.0375300 -3.941 + + 509.5 511.8 531.8 9 -245.731
6 38.68 0.0250900 + 510.2 511.3 525.1 6 -249.122
16 41.25 0.0018280 -5.281 + 0.05108 510.6 512.4 530.4 8 -247.286
32 42.34 0.0022280 -7.506 + 0.05404 + 511.3 514.1 536.0 10 -245.626
3 35.71 -2.010 567.7 568.2 577.7 4 -279.873
1 34.57 568.3 568.6 575.7 3 -281.142
4 32.60 0.0477400 -2.092 569.3 570.0 581.7 5 -279.647
2 32.16 0.0363400 570.0 570.5 579.9 4 -281.014
12 35.68 0.0004708 -6.880 0.07267 571.1 572.1 585.9 6 -279.527

AIC delta weight
7 507.1 0.00 0.286
23 507.9 0.76 0.196
5 508.4 1.28 0.151
8 508.8 1.61 0.128
24 509.5 2.31 0.090
6 510.2 3.10 0.061
16 510.6 3.43 0.052
32 511.3 4.10 0.037
3 567.7 60.60 0.000
1 568.3 61.14 0.000
4 569.3 62.15 0.000
2 570.0 62.88 0.000
12 571.1 63.91 0.000
Models ranked by AIC(x)
Random terms (all models):
1 | subj

Fixed term is "(Intercept)"

boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')

We see that AIC and AICc agree that the best model is the model with main effects for sex and time
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and a patient-specific random intercept. That model is only second-best in terms of BIC (BIC of 522.01)
after the model with with a main effect of only time (BIC of 520.81).

So, from the models with patient-specific intercepts, there is evidence for the model y ~ sex + time +
(1 | subj).

Let’s try to do the same including a patient-specific random slope for time in the model:
hip_full_subj_time <- lmer(y ~ sex * (age + time) + (time | subj), data = hip,

REML = FALSE,
na.action = "na.fail")

Error: number of observations (=88) <= number of random effects (=90) for term (time | subj); the random-effects parameters and the residual variance (or scale parameter) are probably unidentifiable

We get an error message, because there are now too many different random effect terms in the model to
be able to estimate them all from the data available.

3.

Let’s fit the chosen model using REML
hip_mod <- lmer(y ~ sex + time + (1 | subj), data = hip)
summary(hip_mod)

Linear mixed model fit by REML ['lmerMod']
Formula: y ~ sex + time + (1 | subj)

Data: hip

REML criterion at convergence: 489.5

Scaled residuals:
Min 1Q Median 3Q Max

-3.1899 -0.5637 0.0305 0.6154 1.6744

Random effects:
Groups Name Variance Std.Dev.
subj (Intercept) 2.92 1.709
Residual 14.55 3.815

Number of obs: 88, groups: subj, 30

Fixed effects:
Estimate Std. Error t value

(Intercept) 41.3847 0.9661 42.838
sex -1.8600 1.0360 -1.795
time2 -9.7657 0.9947 -9.817
time3 -7.3572 1.0047 -7.323

Correlation of Fixed Effects:
(Intr) sex time2

sex -0.596
time2 -0.518 -0.011
time3 -0.504 -0.026 0.505

We can use the predict() method to get predictions for the haematocrit profiles of the patients in the
sample, and compare them to the observed profiles.
hip_pred <- within(hip, y <- predict(hip_mod))
hip$type <- "observed"
hip_pred$type <- "predicted"
ggplot(rbind(hip, hip_pred)) +

geom_point(aes(time, y, fill = type), pch = 21, col = "lightgray") +
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geom_line(aes(time, y, group = subj), col = "lightgray") +
facet_grid(type ~ sex, labeller = label_both) +
labs(y = "haematocrit", x = "Time") +
theme_bw()
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In order to identify the patients with missing haematocrit measurements, we check which patients do not
have all 3 times in the data.
id_na <- which(tapply(hip, hip$subj, function(x) !all(1:3 %in% x$time)))
hip_na <- subset(hip, subj %in% id_na)
hip_na

y age sex subj time type
22 42.90 63 0 8 1 observed
23 32.05 63 0 8 2 observed
42 27.95 52 1 15 2 observed
43 33.95 52 1 15 3 observed

Since the chosen model only involves sex, time and subject, we want to predict the haematocrit levels for
every row of the data frame
## Get unique sex/subject combinations for the two patients with missing
## data
new_data <- unique(hip_na[c("sex", "subj")])
## Add time
new_data <- rbind(data.frame(time = factor(1:3), new_data[1, ]),

data.frame(time = factor(1:3), new_data[2, ]))
new_data

time sex subj
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1 1 0 8
2 2 0 8
3 3 0 8
4 1 1 15
5 2 1 15
6 3 1 15

The predictions are
new_data$y <- predict(hip_mod, newdata = new_data)
new_data

time sex subj y
1 1 0 8 41.66335
2 2 0 8 31.89765
3 3 0 8 34.30619
4 1 1 15 39.52090
5 2 1 15 29.75520
6 3 1 15 32.16374

We can plot the observed and the predicted levels for the two patients
new_data$type <- "predicted"
hip_na$type <- "observed"
ggplot(rbind(new_data, hip_na[names(new_data)])) +

geom_point(aes(time, y, fill = type), pch = 21, col = "lightgray") +
geom_line(aes(time, y, group = interaction(subj, type)), col = "lightgray") +
facet_grid( ~ sex, labeller = label_both) +
labs(y = "haematocrit", x = "Time") +
theme_bw()
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