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1 Model selection
1.1 Introduction

All models are wrong, but some models are useful

– George Box (1919–2013)

Statisticians construct models to simplify reality, to gain understanding, to compare scientific, economic,
or other theories, and to predict future events or data. We rarely believe in our models, but regard them
as temporary constructs, which should be subject to improvement. Often we have several models and
must decide which, if any, is preferable.

Criteria for model selection include:

• Substantive knowledge, from previous studies, theoretical arguments, dimensional or other general
considerations.

• Sensitivity to failure of assumptions: we prefer models that provide valid inference even if some of
their assumptions are invalid.

• Quality of fit of models to data: we could use informal measures such as residuals, graphical
assessment, or more formal or goodness-of-fit tests.

• For reasons of economy we seek ‘simple’ models.

There may be a very large number of plausible models for us to compare. For instance, in a linear
regression with 𝑝 covariates, there are 2𝑝 possible combinations of covariates: for each covariate, we need
to decide whether or not to include that variable in the model. If 𝑝 = 20 we have over a million possible
models to consider, and the problem becomes even more complex if we allow for transformations and
interactions in the model.

To focus and simplify discussion we will consider model selection among parametric models, but the
ideas generalise to semi-parametric and non-parametric settings.

Example 1.1. A logistic regression model for binary responses assumes that 𝑌𝑖 ∼ Bernoulli(𝜋𝑖), with a
linear model for log odds of ‘success’

log {𝑃(𝑌𝑖 = 1)
𝑃(𝑌𝑖 = 0)} = log ( 𝜋𝑖

1 − 𝜋𝑖
) = 𝑥𝑇

𝑖 𝛽.

The log-likelihood for 𝛽 based on independent responses with covariate vectors 𝑥1, … , 𝑥𝑛 is

ℓ(𝛽) =
𝑛

∑
𝑗=1

𝑦𝑗𝑥𝑇
𝑗 𝛽 −

𝑛
∑
𝑗=1

log {1 + exp(𝑥𝑇
𝑗 𝛽)}

A good fit gives large fitted loglikelihood ̂ℓ = ℓ( ̂𝛽) where ̂𝛽 is the MLE under the model.

The SMPracticals package contains a dataset called nodal, which relates to the the nodal involvement
(r) of 53 patients with prostate cancer, with five binary covariates aged, stage, grade, xray and acid.
Considering only of models without any interaction between the 5 binary covariates, there are still
25 = 32 possible logistic regression models for this data. We can rank these models according to fitted
loglikelihood ̂ℓ. Figure 1 summarises this as a plot of the number of parameters against the fitted
loglikelihood for each of the 32 models under consideration.
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Figure 1: Fitted loglikelihood for 32 possible logistic regression models for the nodal data

Adding terms always increases the loglikelihood ̂ℓ, so taking the model with highest ̂ℓ would give the full
model. We need to a different way to compare models, which should trade off quality of fit (measured
by ̂ℓ) and model complexity (number of parameters).

1.2 Criteria for model selection
1.2.1 Likelihood inference under the wrong model

Suppose the (unknown) true model is 𝑔(𝑦), that is, 𝑌1, … , 𝑌𝑛 ∼ 𝑔. Suppose we have a candidate
model 𝑓(𝑦; 𝜃), under which we assume 𝑌1, … , 𝑌𝑛 ∼ 𝑓(𝑦; 𝜃), which we wish to compare against other
candidate models. For each candidate model, we will first find maximum likelihood estimate ̂𝜃 of the
model parameters, then use some criteria based on the fitted loglikelihood ̂ℓ = ℓ( ̂𝜃) to compare candidate
models.

We do not assume that our candidate models are correct: there may be no value of 𝜃 such that 𝑓(.; 𝜃) =
𝑔(.). Before we can decide on an appropriate criterion for choosing between models, we first need to
understand the asymptotic behaviour of ̂𝜃 and ℓ( ̂𝜃) without the usual assumption that the model is
correctly specified.

The log likelihood ℓ(𝜃) will be maximised at ̂𝜃, and

̄ℓ( ̂𝜃) = 𝑛−1ℓ( ̂𝜃) → ∫ log 𝑓(𝑦; 𝜃𝑔)𝑔(𝑦) 𝑑𝑦, almost surely as 𝑛 → ∞,

where 𝜃𝑔 minimises the Kullback–Leibler divergence

𝐾𝐿(𝑓𝜃, 𝑔) = ∫ log { 𝑔(𝑦)
𝑓(𝑦; 𝜃)} 𝑔(𝑦) 𝑑𝑦.

Theorem 1.1. Suppose the true model is 𝑔, that is, 𝑌1, … , 𝑌𝑛 ∼ 𝑔, but we assume that 𝑌1, … , 𝑌𝑛 ∼ 𝑓(𝑦; 𝜃).
Then under mild regularity conditions, the maximum likelihood estimator ̂𝜃 has asymptotic distribution

̂𝜃 ∼ 𝑁𝑝 {𝜃𝑔, 𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)𝐼(𝜃𝑔)−1} , (1)

where

𝐾(𝜃) = 𝑛 ∫ 𝜕 log 𝑓(𝑦; 𝜃)
𝜕𝜃

𝜕 log 𝑓(𝑦; 𝜃)
𝜕𝜃𝑇 𝑔(𝑦) 𝑑𝑦,

𝐼(𝜃) = −𝑛 ∫ 𝜕2 log 𝑓(𝑦; 𝜃)
𝜕𝜃𝜕𝜃𝑇 𝑔(𝑦) 𝑑𝑦.
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The likelihood ratio statistic has asymptotic distribution

𝑊(𝜃𝑔) = 2 {ℓ( ̂𝜃) − ℓ(𝜃𝑔)} ∼
𝑝

∑
𝑟=1

𝜆𝑟𝑉𝑟,

where 𝑉1, … , 𝑉𝑝 ∼ 𝜒2
1, and the 𝜆𝑟 are eigenvalues of 𝐾(𝜃𝑔)1/2𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)1/2. Thus 𝐸{𝑊(𝜃𝑔)} =

tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)}.

Under the correct model, 𝜃𝑔 is the ‘true’ value of 𝜃, 𝐾(𝜃) = 𝐼(𝜃), 𝜆1 = ⋯ = 𝜆𝑝 = 1, and we recover the
usual results.

In practice 𝑔(𝑦) is of course unknown, and then 𝐾(𝜃𝑔) and 𝐼(𝜃𝑔) may be estimated by

𝐾̂ =
𝑛

∑
𝑗=1

𝜕 log 𝑓(𝑦𝑗; ̂𝜃)
𝜕𝜃

𝜕 log 𝑓(𝑦𝑗; ̂𝜃)
𝜕𝜃𝑇 , ̂𝐽 = −

𝑛
∑
𝑗=1

𝜕2 log 𝑓(𝑦𝑗; ̂𝜃)
𝜕𝜃𝜕𝜃𝑇 ;

the latter is just the observed information matrix. We may then construct confidence intervals for 𝜃𝑔
using (1) with variance matrix ̂𝐽−1𝐾̂ ̂𝐽−1.

1.2.2 Information criteria

Using the fitted likelihood ̄ℓ( ̂𝜃) to choose between models leads to overfitting, because we use the data
twice: first to estimate 𝜃, then again to evaluate the model fit. If we had another independent sample
𝑌 +

1 , … , 𝑌 +
𝑛 ∼ 𝑔 and computed

̄ℓ+( ̂𝜃) = 𝑛−1
𝑛

∑
𝑗=1

log 𝑓(𝑌 +
𝑗 ; ̂𝜃),

then we would not have this problem, suggesting that we choose the candidate model that maximises

Δ = 𝐸𝑔 [𝐸+
𝑔 { ̄ℓ+( ̂𝜃)}] ,

where the inner expectation is over the distribution of the 𝑌 +
𝑗 , and the outer expectation is over the

distribution of ̂𝜃.

Since 𝑔(.) is unknown, we cannot compute Δ directly. We will show that ̄ℓ( ̂𝜃) is a biased estimator of
Δ, but by adding an appropriate penalty term we can obtain an approximately unbiased estimator of Δ,
which we can use for model comparison.

We write
𝐸𝑔{ ̄ℓ( ̂𝜃)} = 𝐸𝑔{ ̄ℓ( ̂𝜃) − ̄ℓ(𝜃𝑔)}⏟⏟⏟⏟⏟⏟⏟

𝑎

+ 𝐸𝑔{ ̄ℓ(𝜃𝑔)} − Δ⏟⏟⏟⏟⏟⏟⏟
𝑏

+Δ

We will find expressions for 𝑎 and 𝑏, which will give us the bias in using ̄ℓ( ̂𝜃) to estimate Δ, and allow
us to correct for this bias.

We have
𝑎 = 𝐸𝑔{ ̄ℓ( ̂𝜃) − ̄ℓ(𝜃𝑔)} = 1

2𝑛𝐸𝑔{𝑊(𝜃𝑔)} ≈ 1
2𝑛 tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)}.

Results on inference under the wrong model may be used to show that

𝑏 = 𝐸𝑔{ ̄ℓ(𝜃𝑔)} − Δ ≈ 1
2𝑛 tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)},

where the second term is a penalty that depends on the model dimension. We will not prove this here.

Putting this together, we have

𝐸𝑔{ ̄ℓ( ̂𝜃)} = Δ + 𝑎 + 𝑏 = Δ + 1
𝑛 tr{𝐼(𝜃𝑔)−1𝐾(𝜃𝑔)},

so remove the bias in using ̄ℓ( ̂𝜃) to estimate Δ, we aim to maximise

̄ℓ( ̂𝜃) − 1
𝑛 tr( ̂𝐽−1𝐾̂).
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Equaivalently, we can maximise
̂ℓ − tr( ̂𝐽−1𝐾̂),

or equivalently minimise
2{tr( ̂𝐽−1𝐾̂) − ̂ℓ},

the Network Information Criterion (NIC).

Let 𝑝 = dim(𝜃) be the number of parameters for a model, and ̂ℓ the corresponding maximised log
likelihood. There are many other information criteria with a variety of penalty terms:

• 2(𝑝 − ̂ℓ) (AIC—Akaike Information Criterion)
• 2( 1

2 𝑝 log 𝑛 − ̂ℓ) (BIC—Bayes Information Criterion)
• AICc, AICu, DIC, EIC, FIC, GIC, SIC, TIC, …
• Mallows 𝐶𝑝 = 𝑅𝑆𝑆/𝑠2 +2𝑝 −𝑛 commonly used in regression problems, where 𝑅𝑆𝑆 is residual sum

of squares for candidate model, and 𝑠2 is an estimate of the error variance 𝜎2.

Example 1.2. AIC and BIC can both be used to choose between the 25 models previously fitted to
the nodal involvement data. In this case, both prefer the same model, which includes three of the five
covariates: acid, stage and xray (so has four free parameters).

Figure 2 shows the AIC and BIC for each model, against the number of free parameters. BIC increases
more rapidly than AIC after the minimum, as it penalises more strongly against complex models.
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Figure 2: AIC and BIC for 32 possible logistic regression models for the nodal data

1.2.3 Theoretical properties of information criteria

We may suppose that the true underlying model is of infinite dimension, and that by choosing among
our candidate models we hope to get as close as possible to this ideal model, using the data available. If
so, we need some measure of distance between a candidate and the true model, and we aim to minimise
this distance. A model selection procedure that selects the candidate closest to the truth for large 𝑛 is
called asymptotically efficient.

An alternative is to suppose that the true model is among the candidate models. If so, then a model
selection procedure that selects the true model with probability tending to one as 𝑛 → ∞ is called
consistent.

We seek to find the correct model by minimising IC = 𝑐(𝑛, 𝑝) − 2 ̂ℓ, where the penalty 𝑐(𝑛, 𝑝) depends on
sample size 𝑛 and model dimension 𝑝

• Crucial aspect is behaviour of differences of IC.
• We obtain IC for the true model, and IC+ for a model with one more parameter.

Then

𝑃(IC+ < IC) = 𝑃 {𝑐(𝑛, 𝑝 + 1) − 2 ̂ℓ+ < 𝑐(𝑛, 𝑝) − 2 ̂ℓ}
= 𝑃 {2( ̂ℓ+ − ̂ℓ) > 𝑐(𝑛, 𝑝 + 1) − 𝑐(𝑛, 𝑝)} .
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and in large samples

for AIC, 𝑐(𝑛, 𝑝 + 1) − 𝑐(𝑛, 𝑝) = 2
for NIC, 𝑐(𝑛, 𝑝 + 1) − 𝑐(𝑛, 𝑝) ≈ 2
for BIC, 𝑐(𝑛, 𝑝 + 1) − 𝑐(𝑛, 𝑝) = log 𝑛

In a regular case 2( ̂ℓ+ − ̂ℓ) ∼ 𝜒2
1, so as 𝑛 → ∞,

𝑃(IC+ < IC) → {0.16, AIC, NIC,
0, BIC.

Thus AIC and NIC have non-zero probability of over-fitting, even in very large samples, but BIC does
not.

1.3 Variable selection for linear models
Consider a normal linear model

𝑌𝑛×1 = 𝑋†
𝑛×𝑞𝛽𝑞×1 + 𝜖𝑛×1, 𝜖 ∼ 𝑁𝑛(0, 𝜎2𝐼𝑛),

with design matrix 𝑋† with columns 𝑥𝑟, for 𝑟 ∈ 𝒳 = {1, … , 𝑞}. We choose a model corresponding to a
subset 𝒮 ⊆ 𝒳 of columns of 𝑋†, of dimension 𝑝 = |𝑆|.
Terminology:

• the true model corresponds to the subset 𝒯 = {𝑟 ∶ 𝛽𝑟 ≠ 0}, and |𝒯| = 𝑝0 < 𝑞;
• a correct model contains 𝒯 but has other columns also, corresponding subset 𝒮 satisfies 𝒯 ⊂ 𝒮 ⊂ 𝒳

and 𝒯 ≠ 𝒮;
• a wrong model has subset 𝒮 lacking some 𝑥𝑟 for which 𝛽𝑟 ≠ 0, and so 𝒯 ⊄ 𝒮.

We aim to identify 𝒯. If we choose a wrong model, we will have bias, whereas if we choose a correct
model, we may increase the variance. We seek to choose a model which balances the bias and variance.

To identify 𝒯, we fit a candidate model 𝑌 = 𝑋𝛽 + 𝜖, where columns of 𝑋 are a subset 𝒮 of those of 𝑋†.
The fitted values are

𝑋 ̂𝛽 = 𝑋{(𝑋𝑇 𝑋)−1𝑋𝑇 𝑌 } = 𝐻𝑌 = 𝐻(𝜇 + 𝜖) = 𝐻𝜇 + 𝐻𝜖,

where 𝐻 = 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇 is the hat matrix and 𝐻𝜇 = 𝜇 if the model is correct

Following the reasoning for AIC, suppose we also have independent dataset 𝑌+ from the true model, so
𝑌+ = 𝜇 + 𝜖+. Apart from constants, previous measure of prediction error is

Δ(𝑋) = 𝑛−1𝐸𝐸+ {(𝑌+ − 𝑋 ̂𝛽)𝑇 (𝑌+ − 𝑋 ̂𝛽)} ,

with expectations over both 𝑌+ and 𝑌 .

Theorem 1.2. We have

Δ(𝑋) = 𝑛−1𝜇𝑇 (𝐼 − 𝐻)𝜇 + (1 + 𝑝/𝑛)𝜎2

=
⎧{
⎨{⎩

𝑛−1𝜇𝑇 (𝐼 − 𝐻)𝜇 + (1 + 𝑝/𝑛)𝜎2 if model is wrong,
(1 + 𝑝0/𝑛)𝜎2 if model is true,
(1 + 𝑝/𝑛)𝜎2 if model is correct.

The bias term 𝑛−1𝜇𝑇 (𝐼 − 𝐻)𝜇 > 0 unless the model is correct, and is reduced by including useful
terms. The variance term (1 + 𝑝/𝑛)𝜎2 is increased by including useless terms. Ideally we would choose
covariates 𝑋 to minimise Δ(𝑋), but this is impossible, as it depends on unknowns 𝜇, 𝜎. We will have to
estimate Δ(𝑋).
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Proof. Consider data 𝑦 = 𝜇 + 𝜖 to which we fit the linear model 𝑦 = 𝑋𝛽 + 𝜖, obtaining fitted values

𝑋 ̂𝛽 = 𝐻𝑦 = 𝐻(𝜇 + 𝜖)

where the second term is zero if 𝜇 lies in the space spanned by the columns of 𝑋, and otherwise is not.

We have a new data set 𝑦+ = 𝜇 + 𝜖+, and we will compute the average error in predicting 𝑦+ using 𝑋 ̂𝛽,
which is

Δ = 𝑛−1𝐸 {(𝑦+ − 𝑋 ̂𝛽)𝑇 (𝑦+ − 𝑋 ̂𝛽)} .
Now

𝑦+ − 𝑋 ̂𝛽 = 𝜇 + 𝜖+ − (𝐻𝜇 + 𝐻𝜖) = (𝐼 − 𝐻)𝜇 + 𝜖+ − 𝐻𝜖.
Therefore

(𝑦+ − 𝑋 ̂𝛽)𝑇 (𝑦+ − 𝑋 ̂𝛽) = 𝜇𝑇 (𝐼 − 𝐻)𝜇 + 𝜖𝑇 𝐻𝜖 + 𝜖𝑇
+𝜖+ + 𝐴

where 𝐸(𝐴) = 0, which gives the result.

Example 1.3. We consider an example with 𝑛 = 20, 𝑝0 = 6, and 𝜎2 = 1. In this example, the true
model is a a degree five polynomial. Figure 3 shows log(Δ(𝑋)) for models of increasing polynomial
degree, from a quadratic model (𝑝 = 3) to a degree 14 polynomial (𝑝 = 15).
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Figure 3: log(Δ(𝑋)) for models with varying polynomial degree

The minimum of Δ(𝑋) is at 𝑝 = 𝑝0 = 6: There is a sharp decrease in bias as useful covariates are added,
and a slow increase with variance as the number of variables 𝑝 increases.

If 𝑛 is large, can split the data into two parts (𝑋′, 𝑦′) and (𝑋∗, 𝑦∗), say, and use one part to estimate
the model, and the other to compute the prediction error; then choose the model that minimises

Δ̂ = 1
𝑛′ (𝑦′ − 𝑋′ ̂𝛽∗)𝑇 (𝑦′ − 𝑋′ ̂𝛽∗) = 1

𝑛′

𝑛′

∑
𝑗=1

(𝑦′
𝑗 − 𝑥′

𝑗 ̂𝛽∗)2.

Usually the dataset is too small for this, so we often use leave-one-out cross-validation, which is the
sum of squares

𝑛Δ̂CV = CV =
𝑛

∑
𝑗=1

(𝑦𝑗 − 𝑥𝑇
𝑗 ̂𝛽−𝑗)2,

where ̂𝛽−𝑗 is estimate computed without (𝑥𝑗, 𝑦𝑗). This seems to require 𝑛 fits of model, but in fact

CV =
𝑛

∑
𝑗=1

(𝑦𝑗 − 𝑥𝑇
𝑗 ̂𝛽)2

(1 − ℎ𝑗𝑗)2 ,

where ℎ11, … , ℎ𝑛𝑛 are diagonal elements of 𝐻, and so can be obtained from one fit.
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A simpler (and often more stable) version uses generalised cross-validation, which is the sum of
squares

GCV =
𝑛

∑
𝑗=1

(𝑦𝑗 − 𝑥𝑇
𝑗 ̂𝛽)2

{1 − tr(𝐻)/𝑛}2 .

Theorem 1.3. We have

𝐸(GCV) = 𝜇𝑇 (𝐼 − 𝐻)𝜇/(1 − 𝑝/𝑛)2 + 𝑛𝜎2/(1 − 𝑝/𝑛) ≈ 𝑛Δ(𝑋).

Proof. We need the expectation of (𝑦 − 𝑋 ̂𝛽)𝑇 (𝑦 − 𝑋 ̂𝛽), where 𝑦 − 𝑋 ̂𝛽 = (𝐼 − 𝐻)𝑦 = (𝐼 − 𝐻)(𝜇 + 𝜖), and
squaring up and noting that 𝐸(𝜖) = 0 gives

𝐸 {(𝑦 − 𝑋 ̂𝛽)𝑇 (𝑦 − 𝑋 ̂𝛽)} = 𝜇𝑇 (𝐼 − 𝐻)𝜇 + 𝐸 {𝜖𝑇 (𝐼 − 𝐻)𝜖} = 𝜇𝑇 (𝐼 − 𝐻)𝜇 + (𝑛 − 𝑝)𝜎2.

Now note that tr(𝐻) = 𝑝 and divide by (1 − 𝑝/𝑛)2 to give (almost) the required result, for which we
need also (1 − 𝑝/𝑛)−1 ≈ 1 + 𝑝/𝑛, for 𝑝 ≪ 𝑛.

We can minimise either GCV or CV. Many variants of cross-validation exist. Typically we find that
model chosen based on CV is somewhat unstable, and that GCV or 𝑘-fold cross-validation works better.
A standard strategy is to split data into 10 roughly equal parts, predict for each part based on the other
nine-tenths of the data, then find the model that minimises this estimate of prediction error.

1.4 A Bayesian perspective on model selection
In a parametric model, data 𝑦 is assumed to be realisation of 𝑌 ∼ 𝑓(𝑦; 𝜃), where 𝜃 ∈ Ω𝜃.

Separate from data, we have prior information about parameter 𝜃 summarised in a prior density 𝜋(𝜃).
The model for the data is 𝑓(𝑦 ∣ 𝜃) ≡ 𝑓(𝑦; 𝜃) The posterior density for 𝜃 is given by Bayes’ theorem:

𝜋(𝜃 ∣ 𝑦) = 𝜋(𝜃)𝑓(𝑦 ∣ 𝜃)
∫ 𝜋(𝜃)𝑓(𝑦 ∣ 𝜃) 𝑑𝜃 .

Here 𝜋(𝜃 ∣ 𝑦) contains all information about 𝜃, conditional on observed data 𝑦. If 𝜃 = (𝜓, 𝜆), then
inference for 𝜓 is based on marginal posterior density

𝜋(𝜓 ∣ 𝑦) = ∫ 𝜋(𝜃 ∣ 𝑦) 𝑑𝜆.

Suppose we have 𝑀 alternative models for the data, with respective parameters 𝜃1 ∈ Ω𝜃1
, … , 𝜃𝑚 ∈ Ω𝜃𝑚

.
Typically the dimensions of Ω𝜃𝑚

are different.

We enlarge the parameter space to give an encompassing model with parameter

𝜃 = (𝑚, 𝜃𝑚) ∈ Ω =
𝑀
⋃

𝑚=1
{𝑚} × Ω𝜃𝑚

.

Thus we need priors 𝜋𝑚(𝜃𝑚 ∣ 𝑚) for the parameters of each model, plus a prior 𝜋(𝑚) giving pre-data
probabilities for each of the models. Overall, we have

𝜋(𝑚, 𝜃𝑚) = 𝜋(𝜃𝑚 ∣ 𝑚)𝜋(𝑚) = 𝜋𝑚(𝜃𝑚)𝜋𝑚,
say.

Inference about model choice is based on marginal posterior density

𝜋(𝑚 ∣ 𝑦) = ∫ 𝑓(𝑦 ∣ 𝜃𝑚)𝜋𝑚(𝜃𝑚)𝜋𝑚 𝑑𝜃𝑚
∑𝑀

𝑚′=1 ∫ 𝑓(𝑦 ∣ 𝜃𝑚′)𝜋𝑚′(𝜃𝑚′)𝜋𝑚′ 𝑑𝜃𝑚′
= 𝜋𝑚𝑓(𝑦 ∣ 𝑚)

∑𝑀
𝑚′=1 𝜋𝑚′𝑓(𝑦 ∣ 𝑚′)

.

We can write
𝜋(𝑚, 𝜃𝑚 ∣ 𝑦) = 𝜋(𝜃𝑚 ∣ 𝑦, 𝑚)𝜋(𝑚 ∣ 𝑦),

so Bayesian updating corresponds to

𝜋(𝜃𝑚 ∣ 𝑚)𝜋(𝑚) ↦ 𝜋(𝜃𝑚 ∣ 𝑦, 𝑚)𝜋(𝑚 ∣ 𝑦)
and for each model 𝑚 = 1, … , 𝑀 we need
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• the posterior probability 𝜋(𝑚 ∣ 𝑦), which involves the marginal likelihood 𝑓(𝑦 ∣ 𝑚) = ∫ 𝑓(𝑦 ∣
𝜃𝑚, 𝑚)𝜋(𝜃𝑚 ∣ 𝑚) 𝑑𝜃𝑚; and

• the posterior density 𝑓(𝜃𝑚 ∣ 𝑦, 𝑚).
If there are just two models, can write

𝜋(1 ∣ 𝑦)
𝜋(2 ∣ 𝑦) = 𝜋1

𝜋2

𝑓(𝑦 ∣ 1)
𝑓(𝑦 ∣ 2) ,

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by the Bayes factor
𝐵12 = 𝑓(𝑦 ∣ 1)/𝑓(𝑦 ∣ 2).
Suppose the prior for each 𝜃𝑚 is 𝑁(0, 𝜎2𝐼𝑑𝑚

), where 𝑑𝑚 = dim(𝜃𝑚). Then, dropping the 𝑚 subscript for
clarity,

𝑓(𝑦 ∣ 𝑚) = 𝜎−𝑑/2(2𝜋)−𝑑/2 ∫ 𝑓(𝑦 ∣ 𝑚, 𝜃) ∏
𝑟

exp {−𝜃2
𝑟/(2𝜎2)} 𝑑𝜃𝑟

≈ 𝜎−𝑑/2(2𝜋)−𝑑/2 ∫ 𝑓(𝑦 ∣ 𝑚, 𝜃) ∏
𝑟

𝑑𝜃𝑟,

for a highly diffuse prior distribution (large 𝜎2).

The Bayes factor for comparing the models is approximately

𝑓(𝑦 ∣ 1)
𝑓(𝑦 ∣ 2) ≈ 𝜎(𝑑2−𝑑1)/2𝑔(𝑦),

where 𝑔(𝑦) depends on the two likelihoods but is independent of 𝜎2. Hence, whatever the data tell us
about the relative merits of the two models, the Bayes factor in favour of the simpler model can be made
arbitrarily large by increasing 𝜎.

This illustrates Lindley’s paradox, and implies that we must be careful when specifying prior dispersion
parameters to compare models.

If a quantity 𝑍 has the same interpretation for all models, it may be necessary to allow for model
uncertainty. In prediction, each model may be just a vehicle that provides a future value, not of interest
per se.

The predictive distribution for 𝑍 may be written

𝑓(𝑧 ∣ 𝑦) =
𝑀

∑
𝑚=1

𝑓(𝑧 ∣ 𝑦, 𝑚)𝑃(𝑚 ∣ 𝑦)

where
𝑃(𝑚 ∣ 𝑦) = 𝑓(𝑦 ∣ 𝑚)𝑃(𝑚)

∑𝑀
𝑚′=1 𝑓(𝑦 ∣ 𝑚′)𝑃 (𝑚′)

.

2 Beyond Generalised Linear Models
2.1 Generalised Linear Models
𝑦1, … , 𝑦𝑛 are observations of response variables 𝑌1, … , 𝑌𝑛 assumed to be independently generated by a
distribution of the same exponential family form, with means 𝜇𝑖 ≡ 𝐸(𝑌𝑖) linked to explanatory variables
𝑋1, 𝑋2, … , 𝑋𝑝 through

𝑔(𝜇𝑖) = 𝜂𝑖 ≡ 𝛽0 +
𝑝

∑
𝑟=1

𝛽𝑟𝑥𝑖𝑟 ≡ 𝑥𝑇
𝑖 𝛽

GLMs have proved remarkably effective at modelling real world variation in a wide range of application
areas. However, situations frequently arise where GLMs do not adequately describe observed data. This
can be due to a number of reasons including:

• The mean model cannot be appropriately specified as there is dependence on an unobserved (or
unobservable) explanatory variable.
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• There is excess variability between experimental units beyond that implied by the mean/variance
relationship of the chosen response distribution.

• The assumption of independence is not appropriate.
• Complex multivariate structure in the data requires a more flexible model class

2.2 Overdispersion
2.2.1 An example of overdispersion

Example 2.1. The dataset toxo in SMPracticals provides data on the number of people testing positive
for toxoplasmosis (r) out of the number of people tested (m) in 34 cities in El Salvador, along with the
annual rainfall in mm (rain) in those cities.

We can fit various logistic regression models for relating toxoplasmosis incidence to rainfall. If we consider
logistic models with a polynomial dependence on rainfall, AIC and stepwise selection methods both prefer
a cubic model. For simplicity here, we compare the cubic model and a constant model, in which there is
no dependence on rainfall.
mod_const <- glm(r/m ~ 1, data = toxo, weights = m,

family = "binomial")
mod_cubic <- glm(r/m ~ poly(rain, 3), data = toxo, weights = m,

family = "binomial")

Figure 4 shows the fitted proportions testing positive under the two models.
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Figure 4: Propotion of people testing positive for toxoplasmosis against rainfall, with fitted proportions
under constant (solid line) and cubic (dotted line) logistic regression models

We can conduct a hypothesis test to compare the models:
anova(mod_const, mod_cubic, test = "Chisq")

## Analysis of Deviance Table
##
## Model 1: r/m ~ 1
## Model 2: r/m ~ poly(rain, 3)
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 33 74.212
## 2 30 62.635 3 11.577 0.008981 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There is apparently evidence to reject the null model (that there is no effect of rain on the probability
of testing positive for toxoplasmosis) in favour of the cubic model.
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However, we find that the residual deviance for the cubic model (62.63) is much larger than the residual
degrees of freedom (30). This is an indicator of overdispersion, where the residual variability is greater
than would be predicted by the specified mean/variance relationship

var(𝑌 ) = 𝜇(1 − 𝜇)
𝑚 .

2.2.2 Quasi-likelihood

A quasi-likelihood approach to accounting for overdispersion models the mean and variance, but stops
short of a full probability model for 𝑌 .

For a model specified by the mean relationship 𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑥𝑇
𝑖 𝛽, and variance var(𝑌𝑖) = 𝜎2𝑉 (𝜇𝑖)/𝑚𝑖,

the quasi-likelihood equations are
𝑛

∑
𝑖=1

𝑥𝑖
𝑦𝑖 − 𝜇𝑖

𝜎2𝑉 (𝜇𝑖)𝑔′(𝜇𝑖)/𝑚𝑖
= 0

If 𝑉 (𝜇𝑖)/𝑚𝑖 represents var(𝑌𝑖) for a standard distribution from the exponential family, then these equa-
tions can be solved for 𝛽 using standard GLM software.

Provided the mean and variance functions are correctly specified, asymptotic normality for ̂𝛽 still holds.

The dispersion parameter 𝜎2 can be estimated using

𝜎̂2 ≡ 1
𝑛 − 𝑝 − 1

𝑛
∑
𝑖=1

𝑚𝑖(𝑦𝑖 − ̂𝜇𝑖)2

𝑉 ( ̂𝜇𝑖)
.

Example 2.2. Fitting the same models as before, but with var(𝑌𝑖) = 𝜎2𝜇𝑖(1 − 𝜇𝑖)/𝑚𝑖, we get
mod_const_quasi <- glm(r/m ~ 1, data = toxo, weights = m,

family = "quasibinomial")
mod_cubic_quasi <- glm(r/m ~ poly(rain, 3), data = toxo, weights = m,

family = "quasibinomial")

We find the estimates of the 𝛽 coefficients are the same as before, but now we estimate 𝜎2 as 1.94 under
the cubic model.

Comparing the cubic with the constant model, we now obtain

𝐹 = (74.21 − 62.62)/3
1.94 = 1.99,

anova(mod_const_quasi, mod_cubic_quasi, test = "F")

## Analysis of Deviance Table
##
## Model 1: r/m ~ 1
## Model 2: r/m ~ poly(rain, 3)
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 33 74.212
## 2 30 62.635 3 11.577 1.9888 0.1369

After accounting for overdispersion, there is much less compelling evidence in favour of an effect of rainfall
on toxoplasmosis incidence.

2.2.3 Models for overdispersion

To construct a full probability model in the presence of overdispersion, it is necessary to consider why
overdispersion might be present.

Possible reasons include:

• There may be an important explanatory variable, other than rainfall, which we haven’t observed.
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• Or there may be many other features of the cities, possibly unobservable, all having a small
individual effect on incidence, but a larger effect in combination. Such effects may be individually
undetectable – sometimes described as natural excess variability between units.

When part of the linear predictor is ‘missing’ from the model,
𝜂true

𝑖 = 𝜂model
𝑖 + 𝜂diff

𝑖 .
We can compensate for this, in modelling, by assuming that the missing 𝜂diff

𝑖 ∼ 𝐹 in the population.
Hence, given 𝜂model

𝑖
𝜇𝑖 ≡ 𝑔−1(𝜂model

𝑖 + 𝜂diff
𝑖 ) ∼ 𝐺

where 𝐺 is the distribution induced by 𝐹 . Then
𝐸(𝑌𝑖) = 𝐸𝐺[𝐸(𝑌𝑖 ∣ 𝜇𝑖)] = 𝐸𝐺(𝜇𝑖)

var(𝑌𝑖) = 𝐸𝐺(𝑉 (𝜇𝑖)/𝑚𝑖) + var𝐺(𝜇𝑖)

One approach is to model the 𝑌𝑖 directly, by specifying an appropriate form for 𝐺.

For example, for the toxoplasmosis data, we might specify a beta-binomial model, where
𝜇𝑖 ∼ Beta(𝑘𝜇∗

𝑖 , 𝑘[1 − 𝜇∗
𝑖 ])

leading to
𝐸(𝑌𝑖) = 𝜇∗

𝑖 , var(𝑌𝑖) = 𝜇∗
𝑖 (1 − 𝜇∗

𝑖 )
𝑚𝑖

(1 + 𝑚𝑖 − 1
𝑘 + 1 )

with (𝑚𝑖 − 1)/(𝑘 + 1) representing an overdispersion factor.

Models which explicitly account for overdispersion can, in principle, be fitted using your preferred ap-
proach, e.g. the beta-binomial model has likelihood

𝑓(𝑦 ∣ 𝜇∗, 𝑘) ∝
𝑛

∏
𝑖=1

Γ(𝑘𝜇∗
𝑖 + 𝑚𝑖𝑦𝑖)Γ{𝑘(1 − 𝜇∗

𝑖 ) + 𝑚𝑖(1 − 𝑦𝑖)}Γ(𝑘)
Γ(𝑘𝜇∗

𝑖 )Γ{𝑘(1 − 𝜇∗
𝑖 )}Γ(𝑘 + 𝑚𝑖)

.

Similarly the corresponding model for count data specifies a gamma distribution for the Poisson mean,
leading to a negative binomial marginal distribution for 𝑌𝑖.

However, these models have limited flexibility and can be difficult to fit, so an alternative approach is
usually preferred.

A more flexible, and extensible approach models the excess variability by including an extra term in the
linear predictor

𝜂𝑖 = 𝑥𝑇
𝑖 𝛽 + 𝑢𝑖 (2)

where the 𝑢𝑖 can be thought of as representing the ‘extra’ variability between units, and are called
random effects.

The model is completed by specifying a distribution 𝐹 for 𝑢𝑖 in the population – almost always, we use
𝑢𝑖 ∼ 𝑁(0, 𝜎2) for some unknown 𝜎2.

We set 𝐸(𝑢𝑖) = 0, as an unknown mean for 𝑢𝑖 would be unidentifiable in the presence of the intercept
parameter 𝛽0.

The parameters of this random effects model are usually considered to be (𝛽, 𝜎2) and therefore the
likelihood is given by

𝑓(𝑦 ∣ 𝛽, 𝜎2) = ∫ 𝑓(𝑦 ∣ 𝛽, 𝑢, 𝜎2)𝑓(𝑢 ∣ 𝛽, 𝜎2)𝑑𝑢

= ∫ 𝑓(𝑦 ∣ 𝛽, 𝑢)𝑓(𝑢 ∣ 𝜎2)𝑑𝑢

= ∫
𝑛

∏
𝑖=1

𝑓(𝑦𝑖 ∣ 𝛽, 𝑢𝑖)𝑓(𝑢𝑖 ∣ 𝜎2)𝑑𝑢𝑖 (3)

where 𝑓(𝑦𝑖 ∣ 𝛽, 𝑢𝑖) arises from our chosen exponential family, with linear predictor (2) and 𝑓(𝑢𝑖 ∣ 𝜎2) is
a univariate normal p.d.f.

Often no further simplification of (3) is possible, so computation needs careful consideration – we will
come back to this later.
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2.3 Dependence
2.3.1 Toxoplasmosis example revisited

Example 2.3. We can think of the toxoplasmosis proportions 𝑌𝑖 in each city (𝑖) as arising from the sum
of binary variables, 𝑌𝑖𝑗, representing the toxoplasmosis status of individuals (𝑗), so 𝑚𝑖𝑌𝑖 = ∑𝑚𝑖

𝑗=1 𝑌𝑖𝑗.

Then

var(𝑌𝑖) = 1
𝑚2

𝑖

𝑚𝑖

∑
𝑗=1

var(𝑌𝑖𝑗) + 1
𝑚2

𝑖
∑
𝑗≠𝑘

cov(𝑌𝑖𝑗, 𝑌𝑖𝑘)

= 𝜇𝑖(1 − 𝜇𝑖)
𝑚𝑖

+ 1
𝑚2

𝑖
∑
𝑗≠𝑘

cov(𝑌𝑖𝑗, 𝑌𝑖𝑘)

So any positive correlation between individuals induces overdispersion in the counts.

There may be a number of plausible reasons why the responses corresponding to units within a given
cluster are dependent (in the toxoplasmosis example, cluster = city). One compelling reason is the
unobserved heterogeneity discussed previously.

In the ‘correct’ model (corresponding to 𝜂true
𝑖 ), the toxoplasmosis status of individuals, 𝑌𝑖𝑗, are indepen-

dent, so
𝑌𝑖𝑗 ⟂⟂ 𝑌𝑖𝑘 ∣ 𝜂true

𝑖 ⇔ 𝑌𝑖𝑗 ⟂⟂ 𝑌𝑖𝑘 ∣ 𝜂model
𝑖 , 𝜂diff

𝑖 .
However, in the absence of knowledge of 𝜂diff

𝑖

𝑌𝑖𝑗 ⟂⟂/ 𝑌𝑖𝑘 ∣ 𝜂model
𝑖 .

Hence conditional (given 𝜂diff
𝑖 ) independence between units in a common cluster 𝑖 becomes marginal

dependence, when marginalised over the population distribution 𝐹 of unobserved 𝜂diff
𝑖 .

The correspondence between positive intra-cluster correlation and unobserved heterogeneity suggests that
intra-cluster dependence might be modelled using random effects, For example, for the individual-level
toxoplasmosis data

𝑌𝑖𝑗 ∼ Bernoulli(𝜇𝑖𝑗), log
𝜇𝑖𝑗

1 − 𝜇𝑖𝑗
= 𝑥𝑇

𝑖𝑗𝛽 + 𝑢𝑖, 𝑢𝑖 ∼ 𝑁(0, 𝜎2)

which implies
𝑌𝑖𝑗 ⟂⟂/ 𝑌𝑖𝑘 ∣ 𝛽, 𝜎2

Intra-cluster dependence arises in many applications, and random effects provide an effective way of
modelling it.

2.3.2 Marginal models and generalised estimating equations

Random effects modelling is not the only way of accounting for intra-cluster dependence.

A marginal model models 𝜇𝑖𝑗 ≡ 𝐸(𝑌𝑖𝑗) as a function of explanatory variables, through 𝑔(𝜇𝑖𝑗) = 𝑥𝑇
𝑖𝑗𝛽,

and also specifies a variance relationship var(𝑌𝑖𝑗) = 𝜎2𝑉 (𝜇𝑖𝑗)/𝑚𝑖𝑗 and a model for corr(𝑌𝑖𝑗, 𝑌𝑖𝑘), as a
function of 𝜇 and possibly additional parameters.

It is important to note that the parameters 𝛽 in a marginal model have a different interpretation from
those in a random effects model, because for the latter

𝐸(𝑌𝑖𝑗) = 𝐸(𝑔−1[𝑥𝑇
𝑖𝑗𝛽 + 𝑢𝑖]) ≠ 𝑔−1(𝑥𝑇

𝑖𝑗𝛽) (unless 𝑔 is linear).

A random effects model describes the mean response at the subject level (‘subject specific’). A marginal
model describes the mean response across the population (‘population averaged’).

As with the quasi-likelihood approach above, marginal models do not generally provide a full probability
model for 𝑌 . Nevertheless, 𝛽 can be estimated using generalised estimating equations (GEEs).
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The GEE for estimating 𝛽 in a marginal model is of the form

∑
𝑖

(𝜕𝜇𝑖
𝜕𝛽 )

𝑇
var(𝑌𝑖)−1(𝑌𝑖 − 𝜇𝑖) = 0

where 𝑌𝑖 = (𝑌𝑖𝑗) and 𝜇𝑖 = (𝜇𝑖𝑗).
Consistent covariance estimates are available for GEE estimators. Furthermore, the approach is generally
robust to mis-specification of the correlation structure. For the rest of this module, we focus on fully
specified probability models.

2.3.3 Clustered data

Examples where data are collected in clusters include:

• Studies in biometry where repeated measures are made on experimental units. Such studies can
effectively mitigate the effect of between-unit variability on important inferences.

• Agricultural field trials, or similar studies, for example in engineering, where experimental units
are arranged within blocks.

• Sample surveys where collecting data within clusters or small areas can save costs.

Of course, other forms of dependence exist, for example spatial or serial dependence induced by arrange-
ment in space or time of units of observation.

Example 2.4. The rat.growth data in SMPracticals gives the weekly weights (y) of 30 young rats.
Figure 5 shows the weight against week separately for each rat.
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Figure 5: Individual rat weight by week, for the rat growth data

Writing 𝑦𝑖𝑗 for the 𝑗th observation of the weight of rat 𝑖, and 𝑥𝑖𝑗 for the week in which this record was
made, we can fit the simple linear regression

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝜖𝑖𝑗

with resulting estimates ̂𝛽0 = 156.1 (2.25) and ̂𝛽1 = 43.3 (0.92). Figure 6 shows the residuals from this
model, separately for each rat, showing clear evidence of an unexplained difference between rats.

2.4 Linear mixed models
2.4.1 Model statement

A linear mixed model (LMM) for observations 𝑦 = (𝑦1, … , 𝑦𝑛) has the general form

𝑌 ∼ 𝑁(𝜇, Σ), 𝜇 = 𝑋𝛽 + 𝑍𝑏, 𝑏 ∼ 𝑁(0, Σ𝑏), (4)

where 𝑋 and 𝑍 are matrices containing values of explanatory variables. Usually, Σ = 𝜎2𝐼𝑛.
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Figure 6: Residuals from a simple linear regression for each rat in the rat.growth data

A typical example for clustered data might be

𝑌𝑖𝑗 ∼ 𝑁(𝜇𝑖𝑗, 𝜎2), 𝜇𝑖𝑗 = 𝑥𝑇
𝑖𝑗𝛽 + 𝑧𝑇

𝑖𝑗𝑏𝑖, 𝑏𝑖 ∼ 𝑁(0, Σ∗
𝑏), (5)

where 𝑥𝑖𝑗 contain the explanatory data for cluster 𝑖, observation 𝑗 and (normally) 𝑧𝑖𝑗 contains that
sub-vector of 𝑥𝑖𝑗 which is allowed to exhibit extra between cluster variation in its relationship with 𝑌 .

In the simplest (random intercept) case, 𝑧𝑖𝑗 = (1), as in (2).

A plausible LMM for 𝑘 clusters with 𝑛1, … , 𝑛𝑘 observations per cluster, and a single explanatory variable
𝑥 (e.g. the rat growth data) is

𝑦𝑖𝑗 = 𝛽0 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑖)𝑥𝑖𝑗 + 𝜖𝑖𝑗, (𝑏0𝑖, 𝑏1𝑖)𝑇 ∼ 𝑁(0, Σ∗
𝑏).

This fits into the general LMM framework (4) with Σ = 𝜎2𝐼𝑛 and

𝑋 = ⎛⎜
⎝

1 𝑥11
⋮ ⋮
1 𝑥𝑘𝑛𝑘

⎞⎟
⎠

, 𝑍 = ⎛⎜
⎝

𝑍1 0 0
0 ⋱ 0
0 0 𝑍𝑘

⎞⎟
⎠

, 𝑍𝑖 = ⎛⎜
⎝

1 𝑥𝑖1
⋮ ⋮
1 𝑥𝑖𝑛𝑖

⎞⎟
⎠

,

𝛽 = (𝛽0
𝛽1

) , 𝑏 = ⎛⎜
⎝

𝑏1
⋮

𝑏𝑘

⎞⎟
⎠

, 𝑏𝑖 = (𝑏0𝑖
𝑏1𝑖

) , Σ𝑏 = ⎛⎜
⎝

Σ∗
𝑏 0 0

0 ⋱ 0
0 0 Σ∗

𝑏

⎞⎟
⎠

where Σ∗
𝑏 is an unspecified 2 × 2 positive definite matrix.

The term mixed model refers to the fact that the linear predictor 𝑋𝛽 + 𝑍𝑏 contains both fixed effects
𝛽 and random effects 𝑏.

Under an LMM, we can write the marginal distribution of 𝑌 directly as

𝑌 ∼ 𝑁(𝑋𝛽, Σ + 𝑍Σ𝑏𝑍𝑇 ) (6)

where 𝑋 and 𝑍 are matrices containing values of explanatory variables.

Hence var(𝑌 ) is comprised of two variance components. Other ways of describing LMMs for clustered
data, such as (5) (and their generalised linear model counterparts) are known as hierarchical models or
multilevel models. This reflects the two-stage structure of the model, a conditional model for 𝑌𝑖𝑗 ∣ 𝑏𝑖,
followed by a marginal model for the random effects 𝑏𝑖.

Sometimes the hierarchy can have further levels, corresponding to clusters nested within clusters, for
example, patients within wards within hospitals, or pupils within classes within schools.
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2.4.2 Discussion: why random effects?

Instead of including random effects for clusters, e.g.

𝑦𝑖𝑗 = 𝛽0 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑖)𝑥𝑖𝑗 + 𝜖𝑖𝑗,
we could use separate fixed effects for each cluster, e.g.

𝑦𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑖𝑗 + 𝜖𝑖𝑗.
However, inferences can then only be made about those clusters present in the observed data. Random
effects models allow inferences to be extended to a wider population. It also can be the case, as in
the original toxoplasmosis example with only one observation per ‘cluster’, that fixed effects are not
identifiable, whereas random effects can still be estimated. Random effects also allow ‘borrowing strength’
across clusters by shrinking fixed effects towards a common mean.

2.4.3 LMM fitting

The likelihood for (𝛽, Σ, Σ𝑏) is available directly from (6) as

𝑓(𝑦 ∣ 𝛽, Σ, Σ𝑏) ∝ |𝑉 |−1/2 exp (−1
2(𝑦 − 𝑋𝛽)𝑇 𝑉 −1(𝑦 − 𝑋𝛽)) (7)

where 𝑉 = Σ + 𝑍Σ𝑏𝑍𝑇 . This likelihood can be maximised directly (usually numerically).

However, MLEs for variance parameters of LMMs can have large downward bias (particularly in cluster
models with a small number of observed clusters). Hence estimation by REML – REstricted (or REsid-
ual) Maximum Likelihood is usually preferred. REML proceeds by estimating the variance parameters
(Σ, Σ𝑏) using a marginal likelihood based on the residuals from a (generalised) least squares fit of the
model 𝐸(𝑌 ) = 𝑋𝛽.

In effect, REML maximizes the likelihood of any linearly independent sub-vector of (𝐼𝑛 − 𝐻)𝑦 where
𝐻 = 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇 is the usual hat matrix. As

(𝐼𝑛 − 𝐻)𝑦 ∼ 𝑁(0, (𝐼𝑛 − 𝐻)𝑉 (𝐼𝑛 − 𝐻))
this likelihood will be free of 𝛽. It can be written in terms of the full likelihood (7) as

𝑓(𝑟 ∣ Σ, Σ𝑏) ∝ 𝑓(𝑦 ∣ ̂𝛽, Σ, Σ𝑏)|𝑋𝑇 𝑉 𝑋|1/2 (8)

where
̂𝛽 = (𝑋𝑇 𝑉 −1𝑋)−1𝑋𝑇 𝑉 −1𝑦 (9)

is the usual generalised least squares estimator given known 𝑉 .

Having first obtained (Σ̂, Σ̂𝑏) by maximising (8), ̂𝛽 is obtained by plugging the resulting ̂𝑉 into (9).

Note that REML maximised likelihoods cannot be used to compare different fixed effects specifications,
due to the dependence of ‘data’ 𝑟 in 𝑓(𝑟 ∣ Σ, Σ𝑏) on 𝑋.

2.4.4 Estimating random effects

A natural predictor ̃𝑏 of the random effect vector 𝑏 is obtained by minimising the mean squared prediction
error 𝐸[( ̃𝑏 − 𝑏)𝑇 ( ̃𝑏 − 𝑏)] where the expectation is over both 𝑏 and 𝑦.

This is achieved by
̃𝑏 = 𝐸(𝑏 ∣ 𝑦) = (𝑍𝑇 Σ−1𝑍 + Σ−1

𝑏 )−1𝑍𝑇 Σ−1(𝑦 − 𝑋𝛽) (10)
giving the Best Linear Unbiased Predictor (BLUP) for 𝑏, with corresponding variance

var(𝑏 ∣ 𝑦) = (𝑍𝑇 Σ−1𝑍 + Σ−1
𝑏 )−1

The estimates are obtained by plugging in ( ̂𝛽, Σ̂, Σ̂𝑏), and are shrunk towards 0, in comparison with
equivalent fixed effects estimators.

Any component, 𝑏𝑘 of 𝑏 with no relevant data (for example a cluster effect for an as yet unobserved
cluster) corresponds to a null column of 𝑍, and then ̃𝑏𝑘 = 0 and var(𝑏𝑘 ∣ 𝑦) = [Σ𝑏]𝑘𝑘, which may be
estimated if, as is usual, 𝑏𝑘 shares a variance with other random effects.
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2.4.5 Rat growth revisited

Example 2.5. Here, we consider the model

𝑦𝑖𝑗 = 𝛽0 + 𝑏0𝑖 + (𝛽1 + 𝑏1𝑖)𝑥𝑖𝑗 + 𝜖𝑖𝑗, (𝑏0𝑖, 𝑏1𝑖)𝑇 ∼ 𝑁(0, Σ𝑏)

where 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) and Σ𝑏 is an unspecified covariance matrix. This model allows for random (cluster
specific) slope and intercept.

We may fit the model in R by using the lme4 package:
library(lme4)
rat_rs <- lmer(y ~ week + (week | rat), data = rat.growth)
rat_rs

## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ week + (week | rat)
## Data: rat.growth
## REML criterion at convergence: 1084.58
## Random effects:
## Groups Name Std.Dev. Corr
## rat (Intercept) 10.933
## week 3.535 0.18
## Residual 5.817
## Number of obs: 150, groups: rat, 30
## Fixed Effects:
## (Intercept) week
## 156.05 43.27

We could also consider the simpler random intercept model

𝑦𝑖𝑗 = 𝛽0 + 𝑏0𝑖 + 𝛽1𝑥𝑖𝑗 + 𝜖𝑖𝑗, 𝑏0𝑖 ∼ 𝑁(0, 𝜎2
𝑏 ).

rat_ri <- lmer(y ~ week + (1 | rat), data = rat.growth)
rat_ri

## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ week + (1 | rat)
## Data: rat.growth
## REML criterion at convergence: 1127.169
## Random effects:
## Groups Name Std.Dev.
## rat (Intercept) 13.851
## Residual 8.018
## Number of obs: 150, groups: rat, 30
## Fixed Effects:
## (Intercept) week
## 156.05 43.27

We might compare the models with AIC or BIC, but in order to do so we need to refit the models with
maximum likelihood rather than REML.
rat_rs_ML <- lmer(y ~ week + (week | rat), data = rat.growth, REML = FALSE)
rat_ri_ML <- lmer(y ~ week + (1 | rat), data = rat.growth, REML = FALSE)
c(AIC(rat_rs_ML), AIC(rat_ri_ML))

## [1] 1101.124 1139.204
c(BIC(rat_rs_ML), BIC(rat_ri_ML))

## [1] 1119.188 1151.246

By either measure, we prefer the random slopes model.
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An alternative fixed effects model would be to fit a model with separate intercepts and slopes for each
rat

𝑦𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑖𝑗 + 𝜖𝑖𝑗.

Figure 7 shows parameter estimates from the random effects model against those from the fixed effects
model, demonstrating shrinkage of the random effect estimates towards a common mean. Random effects
estimates ‘borrow strength’ across clusters, due to the Σ−1

𝑏 term in (10). The extent of this is determined
by cluster similarity.
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Figure 7: Parameter estimates from the random effects model against those from the fixed effects model
for the rat growth data

2.4.6 Bayesian inference: the Gibbs sampler

Bayesian inference for LMMs (and their generalised linear model counterparts) generally proceeds us-
ing Markov Chain Monte Carlo (MCMC) methods, in particular approaches based on the Gibbs
sampler. Such methods have proved very effective.

MCMC computation provides posterior summaries, by generating a dependent sample from the pos-
terior distribution of interest. Then, any posterior expectation can be estimated by the corresponding
Monte Carlo sample mean, densities can be estimated from samples etc.

MCMC will be covered in detail in APTS: Computer Intensive Statistics. Here we simply describe the
(most basic) Gibbs sampler.

To generate from 𝑓(𝑦1, … , 𝑦𝑛), (where the component 𝑦𝑖s are allowed to be multivariate) the Gibbs
sampler starts from an arbitrary value of 𝑦 and updates components (sequentially or otherwise) by
generating from the conditional distributions 𝑓(𝑦𝑖 ∣ 𝑦�𝑖) where 𝑦�𝑖 are all the variables other than 𝑦𝑖, set
at their currently generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions which are available for sampling.

For the LMM
𝑌 ∼ 𝑁(𝜇, Σ), 𝜇 = 𝑋𝛽 + 𝑍𝑏, 𝑏 ∼ 𝑁(0, Σ𝑏)

with corresponding prior densities 𝑓(𝛽), 𝑓(Σ), 𝑓(Σ𝑏), we obtain the conditional posterior distributions

𝑓(𝛽 ∣ 𝑦, rest) ∝ 𝜙(𝑦 − 𝑍𝑏; 𝑋𝛽, 𝑉 )𝑓(𝛽)
𝑓(𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑦 − 𝑋𝛽; 𝑍𝑏, 𝑉 )𝜙(𝑏; 0, Σ𝑏)
𝑓(Σ ∣ 𝑦, rest) ∝ 𝜙(𝑦 − 𝑋𝛽 − 𝑍𝑏; 0, 𝑉 )𝑓(Σ)

𝑓(Σ𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑏; 0, Σ𝑏)𝑓(Σ𝑏)

where 𝜙(𝑦; 𝜇, Σ) is a 𝑁(𝜇, Σ) p.d.f. evaluated at 𝑦.

We can exploit conditional conjugacy in the choices of 𝑓(𝛽), 𝑓(Σ), 𝑓(Σ𝑏) making the conditionals above
of known form and hence straightforward to sample from. The conditional independence (𝛽, Σ) ⟂⟂ Σ𝑏 ∣ 𝑏
is also helpful.
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2.5 Generalised linear mixed models
2.5.1 Model setup

Generalised linear mixed models (GLMMs) generalise LMMs to non-normal data, in the obvious way:

𝑌𝑖 ∼ 𝐹(⋅ ∣ 𝜇𝑖, 𝜎2), 𝑔(𝜇) ≡ ⎛⎜
⎝

𝑔(𝜇1)
⋮

𝑔(𝜇𝑛)
⎞⎟
⎠

= 𝑋𝛽 + 𝑍𝑏, 𝑏 ∼ 𝑁(0, Σ𝑏) (11)

where 𝐹(⋅ ∣ 𝜇𝑖, 𝜎2) is an exponential family distribution with 𝐸(𝑌 ) = 𝜇 and var(𝑌 ) = 𝜎2𝑉 (𝜇)/𝑚 for
known 𝑚. Commonly (e.g. Binomial, Poisson) 𝜎2 = 1, and we shall assume this from here on.

It is not necessary that the distribution for the random effects 𝑏 is normal, but this usually fits. It is
possible (but beyond the scope of this module) to relax this.

Example 2.6. A plausible GLMM for binary data in 𝑘 clusters with 𝑛1, … , 𝑛𝑘 observations per cluster,
and a single explanatory variable 𝑥 (e.g. the toxoplasmosis data at individual level) is

𝑌𝑖𝑗 ∼ Bernoulli(𝜇𝑖𝑗), log
𝜇𝑖𝑗

1 − 𝜇𝑖𝑗
= 𝛽0 + 𝑏0𝑖 + 𝛽1𝑥𝑖𝑗, 𝑏0𝑖 ∼ 𝑁(0, 𝜎2

𝑏 ) (12)

Note there is no random slope here. This fits into the general GLMM framework (11) with

𝑋 = ⎛⎜
⎝

1 𝑥11
⋮ ⋮
1 𝑥𝑘𝑛𝑘

⎞⎟
⎠

, 𝑍 = ⎛⎜
⎝

𝑍1 0 0
0 ⋱ 0
0 0 𝑍𝑘

⎞⎟
⎠

, 𝑍𝑖 = ⎛⎜
⎝

1
⋮
1
⎞⎟
⎠

,

𝛽 = (𝛽0, 𝛽1)𝑇 , 𝑏 = (𝑏01, … , 𝑏0𝑘)𝑇 , Σ𝑏 = 𝜎2
𝑏 𝐼𝑘.

or equivalent binomial representation for city data, with clusters of size 1.

2.5.2 GLMM likelihood

The marginal distribution for the observed 𝑌 in a GLMM does not usually have a convenient closed-form
representation.

𝑓(𝑦 ∣ 𝛽, Σ𝑏) = ∫ 𝑓(𝑦 ∣ 𝛽, 𝑏, Σ𝑏)𝑓(𝑏 ∣ 𝛽, Σ𝑏)𝑑𝑏

= ∫ 𝑓(𝑦 ∣ 𝛽, 𝑏)𝑓(𝑏 ∣ Σ𝑏)𝑑𝑏

= ∫
𝑛

∏
𝑖=1

𝑓 (𝑦𝑖 ∣ 𝑔−1([𝑋𝛽 + 𝑍𝑏]𝑖)) 𝑓(𝑏 ∣ Σ𝑏)𝑑𝑏. (13)

For nested random effects structures, some simplification is possible. For example, for (12)

𝑓(𝑦 ∣ 𝛽, 𝜎2
𝑏 ) =

𝑘
∏
𝑖=1

∫ ∏
𝑗

𝑓 (𝑦𝑖𝑗 ∣ 𝑔−1(𝑥𝑇
𝑖 𝛽 + 𝑏𝑖)) 𝜙(𝑏𝑖 ∣ 0, 𝜎2

𝑏 )𝑑𝑏𝑖,

a product of one-dimensional integrals.

Fitting a GLMM by likelihood methods requires some method for approximating the integrals involved.

The most reliable when the integrals are of low dimension is to use Gaussian quadrature (see APTS:
Statistical Computing). For example, for a one-dimensional cluster-level random intercept 𝑏𝑖 we might
use

∫ ∏
𝑗

𝑓 (𝑦𝑖𝑗 ∣ 𝑔−1(𝑥𝑇
𝑖 𝛽 + 𝑏𝑖)) 𝜙(𝑏𝑖 ∣ 0, 𝜎2

𝑏 )𝑑𝑏𝑖 ≈
𝑄

∑
𝑞=1

𝑤𝑞 ∏
𝑗

𝑓 (𝑦𝑖𝑗 ∣ 𝑔−1(𝑥𝑇
𝑖 𝛽 + 𝑏𝑖𝑞))

for suitably chosen weights (𝑤𝑞, 𝑞 = 1, … , 𝑄) and quadrature points (𝑏𝑖𝑞, 𝑞 = 1, … , 𝑄)
Effective quadrature approaches use information about the mode and dispersion of the integrand (can be
done adaptively). For multi-dimensional 𝑏𝑖, quadrature rules can be applied recursively, but performance
(in fixed time) diminishes rapidly with dimension.
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An alternative approach is to use a Laplace approximation to the likelihood. Writing

ℎ(𝑏) =
𝑛

∏
𝑖=1

𝑓 (𝑦𝑖 ∣ 𝑔−1([𝑋𝛽 + 𝑍𝑏]𝑖)) 𝑓(𝑏 ∣ Σ𝑏)

for the integrand of the likelihood, a (first-order) Laplace approximation approximates ℎ(.) as an unnor-
malised multivariate normal density function

ℎ̃(𝑏) = 𝑐 𝜙𝑘(𝑏; ̂𝑏, 𝑉 ),

where

• ̂𝑏 is found by maximizing log ℎ(.) over 𝑏.
• the variance matrix 𝑉 is chosen so that the curvature of log ℎ(.) and log ℎ̃(.) agree at ̂𝑏.
• 𝑐 is chosen so that ℎ̃( ̂𝑏) = ℎ( ̂𝑏).

The first-order Laplace approximation is equivalent to adaptive Gaussian quadrature with a single quadra-
ture point. Quadrature provides accurate approximations to the likelihood. For some model structures,
particularly those with crossed rather than nested random effects, the likelihood integral may be high-
dimensional, and it may not be possible to use quadrature. In such cases, a Laplace approximation is
often sufficiently accurate for most purposes, but this is not guaranteed.

Another alternative is to use Penalized Quasi Likelihood (PQL) for inference, which is very fast but often
inaccurate. PQL can fail badly in some cases, particularly with binary observations, and its use is not
recommended. Likelihood inference for GLMMs remains an area of active research and vigorous debate.

Example 2.7. For the individual-level model

𝑌𝑖𝑗 ∼ Bernoulli(𝜇𝑖), log 𝜇𝑖
1 − 𝜇𝑖

= 𝛽0 + 𝑏0𝑖 + 𝛽1𝑥𝑖, 𝑏0𝑖 ∼ 𝑁(0, 𝜎2
𝑏 ), (14)

the estimates and standard errors obtained by ML (quadrature), Laplace and PQL are shown in Table
1. For the extended model

log 𝜇𝑖
1 − 𝜇𝑖

= 𝛽0 + 𝑏0𝑖 + 𝛽1𝑥𝑖𝑗 + 𝛽1𝑥2
𝑖𝑗 + 𝛽1𝑥3

𝑖𝑗, (15)

the estimates and standard errors are shown in Table 2. For this example, there is a good agreement
between the different computational methods.

Table 1: Estimates (with standard errors in brackets) obtained by
various approximations to the likelihood for model (14).

Parameter ML Laplace PQL
𝛽0 -0.1384 (1.452) -0.1343 (1.440) -0.115 (1.445)
𝛽1(×106) 7.215 (752) 5.930 (745.7) 0.57 (749.2)
𝜎𝑏 0.5209 0.5132 0.4946
AIC 65.75 65.96 —

Table 2: Estimates (with standard errors in brackets) obtained by
various approximations to the likelihood for model (15).

Parameter ML Laplace PQL
𝛽0 -335.5 (137.3) -335.1 (136.3) -330.8 (143.4)
𝛽1 0.5238 (0.2128) 0.5231 (0.2112) 0.5166 (0.222)
𝛽2(×104) -2.710 (1.094) -2.706 (1.086) -3 (1.1)
𝛽3(×108) 4.643 (1.866) 4.636 (1.852) 0 (0)
𝜎𝑏 0.4232 0.4171 0.4315
AIC 63.84 63.97 —
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2.5.3 Bayesian inference for GLMMs

Bayesian inference in GLMMs, as in LMMs, is generally based on the Gibbs sampler. For the GLMM

𝑌𝑖 ∼ 𝐹(⋅ ∣ 𝜇), 𝑔(𝜇) = 𝑋𝛽 + 𝑍𝑏, 𝑏 ∼ 𝑁(0, Σ𝑏)

with corresponding prior densities 𝑓(𝛽) and 𝑓(Σ𝑏), we obtain the conditional posterior distributions y

𝑓(𝛽 ∣ 𝑦, rest) ∝ 𝑓(𝛽) ∏
𝑖

𝑓(𝑦𝑖 ∣ 𝑔−1(𝑋𝛽 + 𝑍𝑏))

𝑓(𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑏; 0, Σ𝑏) ∏
𝑖

𝑓(𝑦𝑖 ∣ 𝑔−1(𝑋𝛽 + 𝑍𝑏))

𝑓(Σ𝑏 ∣ 𝑦, rest) ∝ 𝜙(𝑏; 0, Σ𝑏)𝑓(Σ𝑏).

For a conditionally conjugate choice of 𝑓(Σ𝑏), 𝑓(Σ𝑏 ∣ 𝑦, rest) is straightforward to sample from. The
conditionals for 𝛽 and 𝑏 are not generally available for direct sampling, but there are a number of ways
of modifying the basic approach to account for this.

3 Nonlinear models
3.1 Basic nonlinear models
So far we have only considered models where the link function of the mean response is equal to the linear
predictor, i.e. in the most general case of the generalised linear mixed model (GLMM)

𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗), 𝑔(𝜇𝑖𝑗) = 𝜂𝑖𝑗 = 𝑥𝑇
𝑖𝑗𝛽 + 𝑧𝑇

𝑖𝑗𝑏𝑖,

and where the response distribution for 𝑦 is from the exponential family of distributions. The key point is
that the linear predictor is a linear function of the parameters. Linear models, generalised linear models
(GLMs) and linear mixed models (LMMs) are all special cases of the GLMM.

These “linear” models form the basis of most applied statistical analyses. Usually, there is no scientific
reason to believe these linear models are true for a given application.

We begin by considering nonlinear extensions of the normal linear model

𝑦𝑖 = 𝑥𝑇
𝑖 𝛽 + 𝜖𝑖, (16)

where 𝜖𝑖 ∼ 𝑁(0, 𝜎2), independently, where 𝛽 are the 𝑝 regression parameters. Instead of the mean
response being the linear predictor 𝑥𝑇

𝑖 𝛽, we could allow it to be a nonlinear function of parameters, i.e.

𝑦𝑖 = 𝜂(𝑥𝑖, 𝛽) + 𝜖𝑖, (17)

where 𝜖𝑖 ∼ 𝑁(0, 𝜎2), independently, where 𝛽 are the 𝑝 nonlinear parameters. The model specified by
(17) has the linear model (16) as a special case when 𝜂(𝑥, 𝛽) = 𝑥𝑇 𝛽.

Nonlinear parameters can be of two different types:

• Physical parameters have meaning within the science underlying the model, 𝜂(𝑥, 𝛽). Estimating
the value of physical parameters contributes to scientific understanding.

• Tuning parameters do not have physical meaning. Their presence is often as a simplification of
a more complex underlying system. Their estimation is to make the model fit best to reality.

How might the function 𝜂(𝑥, 𝛽) be specified?

• Mechanistically – prior scientific knowledge is incorporated into building a mathematical model
for the mean response. This can often be complex and 𝜂(𝑥, 𝛽) may not be available in closed form.

• Phenomenologically (empirically) – a function 𝜂(𝑥, 𝛽) may be posited that appears to capture
the non-linear nature of the mean response.

Example 3.1. The response, 𝑦, is the uptake of calcium (in nmoles per mg) at time 𝑥 (in minutes) by
𝑛 = 27 cells in “hot” suspension. Figure 8 shows calcium uptake against time.
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Figure 8: Calcium uptake against time

We see that calcium uptake “grows” with time. There is a large class of phenomenological models for
growth curves. Consider the non-linear model with

𝜂(𝑥, 𝛽) = 𝛽0 (1 − exp (−𝑥/𝛽1)) . (18)

This is derived by assuming that the rate of growth is proportional to the calcium remaining, i.e.

𝑑𝜂
𝑑𝑥 = (𝛽0 − 𝜂)/𝛽1.

The solution (with initial condition 𝜂(0, 𝛽) = 0) to this differential equation is (18). Here 𝛽0 is the final
size of the population, and 𝛽1 (inversely) controls the growth rate.

Figure 9 shows fitted lines for the three different models added to the plot of calcium uptake against
time.
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Figure 9: Calcium uptake against time, with expected uptake from three models overlaid

A comparison of the goodness-of-fit for the three models is shown in Table 3. The goodness-of-fit for the
quadratic and nonlinear models is identical (to 2 decimal places). Since the nonlinear model is simpler
(fewer parameters), it is the preferred model.
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Table 3: A comparison of the goodness-of-fit of three models for
the calcium data.

Model Parameters (𝑝) 𝑙( ̂𝛽) AIC
Linear model (slope) 2 -28.70 63.40
Linear model (quadratic) 3 -20.95 49.91
Non-linear model 2 -20.95 47.91

3.2 Extending the nonlinear model
3.2.1 Introduction

Nonlinear models can be extended to non-normal responses and clustered responses in the same way as
linear models. Here, we consider clustered responses and briefly discuss the nonlinear mixed model.

Example 3.2. Theophylline is an anti-asthmatic drug. An experiment was performed on 𝑛 = 12
individuals to investigate the way in which the drug leaves the body. The study of drug concentrations
inside organisms is called pharmacokinetics. An oral dose, 𝐷𝑖, was given to the 𝑖th individual at time
𝑡 = 0, for 𝑖 = 1, … , 𝑛. The concentration of theophylline in the blood was then measured at 11 time
points in the next 25 hours. Let 𝑦𝑖𝑗 be the theophylline concentration (mg/L) for individual 𝑖 at time
𝑡𝑖𝑗. Figure 10 shows the concentration of theophylline against time for each of the individuals. There is
a sharp increase in concentration followed by a steady decrease.
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Figure 10: Concentration of theophylline against time for each of the individuals in the study

Compartmental models are a common class of model used in pharmacokinetics studies. If the initial
dosage is 𝐷, then a two-compartment open pharmacokinetic model is

𝜂(𝛽, 𝐷, 𝑡) = 𝐷𝛽1𝛽2
𝛽3(𝛽2 − 𝛽1) (exp (−𝛽1𝑡) − exp (−𝛽2𝑡)) ,

where the (positive) nonlinear parameters are

• 𝛽1, the elimination rate which controls the rate at which the drug leaves the organism;
• 𝛽2, the absorption rate which controls the rate at which the drug enters the blood;
• 𝛽3, the clearance which controls the volume of blood for which a drug is completely removed per

time unit.

Initially ignore the dependence induced from repeated measurements on individuals and assume the
following basic nonlinear model

𝑦𝑖𝑗 = 𝜂(𝛽, 𝐷𝑖, 𝑡𝑖𝑗) + 𝜖𝑖𝑗,
where 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2). Figure 11 gives a plot of the residuals for each subject in the study under this
model, showing evidence of an unexplained difference between individuals.
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Figure 11: Residuals for each individual in the theopylline study, assuming a basic nonlinear model which
ignores dependence

3.2.2 Nonlinear mixed effects models

A nonlinear mixed model is
𝑦𝑖𝑗 = 𝜂(𝛽 + 𝑏𝑖, 𝑥𝑖𝑗) + 𝜖𝑖𝑗,

where
𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2), 𝑏𝑖 ∼ 𝑁(0, Σ𝑏),

and Σ𝑏 is a 𝑞 × 𝑞 covariance matrix.

This model specifies that 𝛽𝑖 = 𝛽 + 𝑏𝑖 are the nonlinear parameters for the 𝑖th cluster, i.e. the cluster-
specific nonlinear parameters. In the case of the Theophylline example, each individual would have
unique elimination rate, absorption rate and clearance. It follows that 𝛽𝑖 ∼ 𝑁(𝛽, Σ𝑏). The mean, 𝛽, of
the cluster-specific nonlinear parameters across all individuals are the population nonlinear parameters.

We might like to specify the model in a way such that only a subset of the nonlinear parameters can be
different for each individual, and the remainder fixed for all individuals.

Suppose 𝑞 ≤ 𝑝 nonlinear parameters are can be different for each individual, then a more general way of
writing the nonlinear mixed model is

𝑦𝑖𝑗 = 𝜂(𝛽 + 𝐴𝑏𝑖, 𝑥) + 𝜖𝑖𝑗,

where 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2) and 𝑏𝑖 ∼ 𝑁(0, Σ𝑏). Here Σ𝑏 is a 𝑞 × 𝑞 covariance matrix and 𝐴 is a 𝑝 × 𝑞 binary
matrix. 𝐴 allows the specification of the fixed and varying nonlinear parameters.

The linear mixed model is a special case of the nonlinear mixed model where

𝜂(𝛽, 𝑥) = 𝑥𝑇 𝛽.

Then
𝜂(𝛽 + 𝐴𝑏, 𝑥) = 𝑥𝑇 (𝛽 + 𝐴𝑏) = 𝑥𝑇 𝛽 + 𝑥𝑇 𝐴𝑏,

so 𝑧 = 𝐴𝑇 𝑥. For a random intercept model, where 𝑞 = 1, 𝐴 = (1, 0, … , 0).
Example 3.3. We fit the nonlinear mixed model, allowing all of the nonlinear parameters to vary across
individuals, i.e. 𝐴 = 𝐼3.

Estimates:
̂𝛽1 = 0.0864 Σ̂𝑏11 = 0.0166
̂𝛽2 = 1.6067 Σ̂𝑏22 = 0.9349
̂𝛽3 = 0.0399 Σ̂𝑏33 = 0.0491

We have AIC = 372.6.
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The estimated value of Σ𝑏11 is “small” so we fit the nonlinear mixed model, allowing absorption rate and
clearance to vary across individuals, i.e.

𝐴 = ⎛⎜
⎝

0 0
1 0
0 1

⎞⎟
⎠

.

Estimates:
̂𝛽1 = 0.0859
̂𝛽2 = 1.6032 Σ̂𝑏22 = 0.6147
̂𝛽3 = 0.0397 Σ̂𝑏33 = 0.0284

We have AIC = 368.6. No further model simplifications reduce the AIC.

3.2.3 Extensions to non-normal responses

Nonlinear models can be extended to non-normal responses in the same way as linear models. The
most general model is the generalised nonlinear mixed model (GNLMM), which assumes 𝑦𝑖𝑗 is from
exponential family,

𝐸(𝑦𝑖𝑗) = 𝜇𝑖𝑗, 𝑔(𝜇𝑖𝑗) = 𝜂(𝛽 + 𝐴𝑏𝑖, 𝑥𝑖𝑗).

This model has the following special cases:

linear model nonlinear model
linear mixed model nonlinear mixed model
generalised linear model generalised nonlinear model
generalised linear mixed model

There are various technical and practical issues related to fitting nonlinear models (some are common to
GLMs and GLMMs). For instance:

• we need to use some approximation of likelihood function (since random effects are integrated out),
• sometimes optimisation routines to find estimates do not converge to a global maximum of the

likelihood,
• evaluating 𝜂(𝛽, 𝑥) is sometimes computationally expensive.

These are all areas of current research.
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